CONSTRUCTION BID DOCUMENTS

NARRATIVE

CT/Radiology Room for Emergency Department

Project No. 595-11-126

Lebanon VA Medical Center Lebanon, PA

Miller-Remick LLC

1010 Kings Highway South Building One – 1st Floor Cherry Hill, New Jersey 08034 (856) 429-4000

March 27, 2013

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
	Introduction & Executive Summary	i
1	Architectural	1-1
2	Heating, Ventilating, and Air Conditioning (HVAC)	2-1
3	Electrical	3-1
4	Plumbing	4-1
5	Fire Protection	5-1
6	Structural	6-1
7	Critical Path Method (CPM)	7-1

APPENDIX	DESCRIPTION
A	Critical Path Method / Project Schedule
В	Architectural
C	Heating, Ventilating, and Air Conditioning (HVAC)
D	Electrical
Е	Plumbing
F	Structural

ARCHITECTURAL - GENERAL

- 1. APPLICABLE LOCAL CODES
 - .1 State of Pennsylvania Uniform Construction Code
 - .2 International Code Series 2009 Edition Including
 - International Building Code (IBC)
 - International Fire Code (IFC)
 - International Fuel Gas Code (IFGC)
 - International Mechanical Code (IMC)
 - International Plumbing Code (IPC)
 - .3 International Existing Building Code 2009 Edition or Chapter 34 of IBC as selected by Design Professional
 - .4 International Fire Code 2009 Edition (as referenced by IBC-2009)
 - .5 NFPA 99 Healthcare Facilities
 - .6 NFPA 101 Life Safety Code, 2009 Edition
 - .7 NFPA 13 Standard for the Installation of Sprinkler Systems
 - .8 NFPA 72 National Fire Alarm and Signaling Code
 - .9 Guidelines for the Design and Construction of Healthcare Facilities, 2010 Edition

2. APPLICABLE NATIONAL STANDARDS

.1 Barrier Free Design Guides that exceeds minimums of the Architectural Barriers Act (ABA) and the Americans with Disabilities Act (ADA) for healthcare projects.

3. APPLICABLE OWNER GUIDELINES

- .1 Architectural Design Manual, August 2011 Edition
- .2 A/E Submission Instructions for Minor and NRM Construction Program

ARCHITECTURAL DESIGN

- 1. CT SCANNING (ROOM XCTS1)
 - .1 Convert area in existing Building 101 into a CT Room. The CT Room can be accessed on both sides from the two adjacent corridors. The room has direct access to a dedicated control room.
 - .2 Areas:
 - CT Room: 447 sf
 - Total Net Area: 447 sf
 - .3 Scope of Work (all rooms unless noted otherwise)
 - New VCT (remove existing flooring and adhesives, shot blast concrete floor, install new vinyl composition tile floor and rubber base).
 - New Acoustical Ceiling Panels in suspended grid system. Ceiling height: 9'-0"
 - Gypsum Board walls to receive paint finish. Shielding as required within gypsum board walls.
 - Corner protection on all exposed corners.
 - Shielded doors into the CT Scanning Room.
 - Shielded viewing window to Control Room.
 - High pressure laminate casework.

.4 Details

- Demolish existing walls, doors, and flooring
- Construct new rated partitions along corridor. Gypsum partitions to receive shielding.
- Install new shielded doors and window. Install new VCT flooring, casework, and sink. Paint gypsum board walls.
- Install CT equipment, including necessary ceiling tracks and supports.

2. CONTROL ROOM (ROOM XCTC1)

.1 Convert area in existing Building 101 into a Control Room. The Control Room can be accessed from the adjacent CT Room. The room is equipped with built in casework for computer monitors and equipment. A viewing window allows staff to observe both the CT Room.

.2 Areas:

• Control Room: 127 sf

• Total Net Area: 127 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New VCT (remove existing flooring and adhesives, shot blast concrete floor, install new vinyl composition tile floor and rubber base).
 - New Acoustical Ceiling Panels in suspended grid system. Ceiling height: 9'-0"
 - Gypsum Board walls to receive paint finish. Shielding as required within gypsum board walls.
 - Corner protection on all exposed corners.
 - Shielded viewing window into the CT Scanning Room.
 - High pressure laminate casework.

.4 Details

- Demolish existing walls, doors, and flooring
- Construct new rated partitions along corridor. Gypsum partitions to receive shielding.
- Install new shielded doors and window. Install new VCT flooring and casework. Paint gypsum board walls.

3. RADIOLOGY ROOM (ROOMS XDR01)

.1 Convert area in existing Building 101 into a Radiology Room. The Radiology Room can be accessed on both sides from the two adjacent corridors. The room has direct access to a dedicated control room.

.2 Areas:

• Radiology Room: 478 sf

• Total Net Area: 478 sf

- .3 Scope of Work (all rooms unless noted otherwise)
 - New VCT (remove existing flooring and adhesives, shot blast concrete floor, install new vinyl composition tile floor and vinyl base).
 - New Acoustical Ceiling Panels in suspended grid system. Ceiling height: 9'-6"
 - Gypsum Board walls to receive paint finish. Shielding as required within gypsum board walls.
 - Corner protection on all exposed corners.
 - Shielded door into the Radiology Room.
 - Shielded viewing window to Control Room.
 - High pressure laminate casework.

.4 Details

- Demolish existing walls, doors, and flooring.
- Demolish existing exterior window and prepare walls for new window installation.
- Construct new rated partitions along corridor. Gypsum partitions to receive shielding.
- Infill portions of existing walls as necessary.
- Install new shielded doors and windows. Install new VCT flooring, casework, and sink. Paint gypsum board walls.
- Install XRAY equipment, including necessary ceiling tracks and supports.

HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

1. GENERAL

This project will provide for the renovation of existing waiting, check-in, and security areas, and an existing triage room, into a new CT scanning room (with integrated control room area) and a new X-Ray room (with integrated control room area) for the emergency department at the VA Medical Center in Lebanon, PA.

2. SCOPE

- .1 The renovation will include the following scope:
 - A new dedicated air handling unit (AHU) will be installed on the roof above the project area to serve the renovated area. Each new room will be designed to meet current VA design requirements.

3. EXISTING CONDITIONS

- .1 Building 101
 - (2) Rooftop AHU's, RT-1 and RT-2, each located on the roof above adjacent spaces, serves the area that makes up the new project scope boundary. Distribution ductwork and piping run above the new project area.
 - Exhaust fan EF-5, located on the roof above the new project area, serves the existing-to-remain toilet rooms, electrical closet, housekeeping closet, and waiting area. Distribution ductwork runs above the new project area.
 - Exhaust fan EF-6, located on the roof above the new project area, serves the existing-to-remain breakroom adjacent to the project area. Distribution ductwork runs above the new project area.

4. DESIGN APPROACH

.1 Each area was analyzed for design approach requirements in the DVA, 'HVAC Design Manual for New, Replacement, Addition, and Renovation of Existing VA Facilities,' for *Imaging Series – Radiology Services*. The following preliminary design approach will be utilized for the new rooms:

.2 General

- Outdoor design conditions: 92.4 degree F DB, 73.8 degree F WB (summer); 0 degree F DB (winter)
- Indoor design conditions: 75 degree F (cooling); 70 degree F (heating).
- Indoor relative humidity: In order to maintain the spaces within a range of 20% to 60% relative humidity during all seasons, a "clean steam" humidifier will be provided in the AHU.
- Minimum total air changes per hour (ACH): 12 ACH (CT and Control rooms); 6 ACH (X-Ray room).
- Minimum outside air changes per hour (ACH): 2
- Filtration to consist of the following: Pre-filter (MERV 7); Pre-filter (MERV 11); Final filter (MERV 14)
- There will be no redundancy built into the design of the project.
- New DDC controls to tie into existing building/site Delta control system.
- Refer to Appendix for load calculations and AHU cut sheets.

.3 **Roof** – New AHU

- A new 2,700 cfm variable volume, return air, AHU will be designed to serve the renovated area. The unit will be mounted on steel dunnage, located on the roof directly above the space adjacent to the project area currently occupied by Waiting.
- The new unit will consist of the following components; Return Fan, Mixing Box, Pre-filter, LPS Integral Face and Bypass Preheat Coil, Chilled Water Cooling Coil, "Clean Steam" Humidifier, Supply Fan, Final Filter, and Discharge Plenum. VFD's will be added to the unit's supply and return fans and located within the external housing on the roof on the unit. Refer to Appendix for AHU dimensional drawings.
- A chilled water coil freeze protection pump will be provided across the chilled water supply and return lines to/from the AHU and will be located above the adjacent waiting room ceiling.
- The AHU will be located so that outside air intake will be 25'0" from any exhaust points. Refer to drawings.

.4 **Ground Floor** – New CT and X-Ray Rooms

- CT Room and Associated Control Area Will be served by a single supply VAV control box with an integral hot water reheat coil for temperature control. An additional hot water reheat coil will be installed in the branch duct to the control area for supplemental heating. Air will enter the room through ceiling mounted diffusers and exit the room through ceiling mounted return grilles. Laminar flow diffusers will be provided to match the recent CT room renovation in adjacent building.
- X-Ray Room and Associated Control Area Will be served by a single supply VAV control box with an integral hot water coil for temperature control. Air will enter the room through ceiling mounted diffusers and exit the room through ceiling mounted return grilles.
- Hot water reheat coils will be fed from rerouted branch lines, located above the ceiling, within the project area. Per discussion with the VA, the discharge air temperature for the reheat coils will be 110 degrees.
- Existing branch ductwork and piping serving the current check-in, security, and triage areas will be capped back at the nearest mains.
- The new spaces will not be designed for individual humidity control.
- Per the VA, commercial, duct-mounted, in-line, elbow sound attenuators installed above the waiting area ceiling at the inlet and discharge of the AHU, will not be required for sound control. Sound control to be accomplished by addition of ductwork elbows upstream of RA inlet to AHU, and downstream of SA outlet from AHU.
- Room pressurization will be positive per the VA standards. An offset between supply and return air quantities will maintain positive air pressurization within each space. Existing EF-5 will be rebalanced to accommodate the resultant additional transfer air into the waiting area. A new return air branch and return grille will return the resultant additional transfer air into the adjacent corridor back to the new AHU.

.5 Control Scheme

- An option for not providing individual room VAV boxes, in lieu of allowing the AHU to effectively be controlled as a single large VAV box, was discussed during the previous design phase and it was decided to not pursue this option.
- Per discussion with the VA, the AHU will be controlled so that when the outdoor air temperature is 30 degrees and below, the AHU leaving air temperature will be set to 55 degrees. When the outdoor air temperature is

80 degrees and above, the AHU leaving air temperature will be set to 55 degrees.

- During normal occupied hours the AHU will operate as a constant volume system. During nighttime unoccupied hours, the unit will have the capability to be controlled to 50% of system flow.
- Per discussion with the VA, control sequences as indicated on drawings, are for bid pricing only. Final control sequences to be per VA.

6. HEATING PLANT

- .1 The existing Lebanon VA Medical Center utilizes high, medium, and low pressure steam as a medium to supply heat to the various systems throughout the campus. Steam piping is run to each building through a series of tunnels and crawl spaces.
 - The heating plant for Building 101 is located in the basement of adjacent Building 1. MPS/MPC, heating hot water and "clean steam" are brought to Building 101 through the crawl space below Building 1.
 - MPS/MPC is utilized for existing roof mounted RTU preheat coils. These branch lines, located above the ceiling, outside of the project area, will be tapped for the new AHU being provided as part of this renovation project. Refer to Appendix for quantities required.
 - "Clean Steam" is utilized for existing roof mounted RTU humidifiers. These branch lines, located above the ceiling, outside of the project area, will be tapped for the new AHU being provided as part of this renovation project. Refer to Appendix for quantities required.

7. COOLING PLANT

.1 The existing Lebanon VA Medical Center utilizes chilled water as a medium to supply cooling to the various systems throughout the campus. Chilled water piping is run to each building through a series of tunnels and crawl spaces. Existing branch lines located above the ceiling, outside of the project area, will be tapped for the new AHU being provided as part of this renovation project. Refer to Appendix for quantities required.

ELECTRICAL

1. GENERAL

.1 This project will provide for the renovation of existing waiting, check-in, and security areas, and an existing triage room, into a new CT scanning room (with integrated control room area) and a new X-Ray room (with integrated control room area) for the emergency department at the VA Medical Center in Lebanon, PA.

2. SCOPE

- .1 The renovation and expansion of storage areas include the following scope:
 - Lighting: The CT scanning room and radiology room will have general lighting consisting of recessed fluorescent lay in fixtures with acrylic prismatic lenses. The room will be illuminated to 50 foot candles. Special incandescent lighting will be provided by recessed 8 inch down light fixtures. The incandescent fixtures will be on a dimmer switch and reduce levels down to five foot candles. The fixtures will be located to avoid direct glare for patient comfort. X ray and CT in use warning lights will be provided at the exterior doors. All lighting will be connected to emergency power to continue operations in the event of normal power loss.

The control rooms will have general lighting consisting of special incandescent lighting provided by recessed 8 inch down light fixtures. The rooms will be illuminated to 30 foot candles. The incandescent fixtures will be on a dimmer switch and reduce levels down to five foot candles. All lighting will be connected to emergency power to continue operations in the event of normal power loss.

Waiting room lighting will consist of lay in fixtures with acrylic prismatic lenses. The room will be illuminated to 50 foot candles. Emergency lighting will be provided from the nearest life safety panel.

LED exit signs will be provided in the corridors and waiting room to direct routes of egress. They will be connected to the nearest life safety panel.

• <u>Power Distribution</u>: Based on the estimate loads, a new emergency equipment 480V, 150A feed will be required to serve the major equipment

to include the CT, X Ray, and AHU. The new panelboard will be located in the control room. The source of normal power for the new panelboard will be fed from the Building 103 Main Switchboard MSB103. The source of emergency power for the new panelboard will be fed from the Building 103 Generator Paralleling Switchboard GPSB103. Transfer of normal and emergency power will be achieved with a new 4 pole, closed transition, 150A automatic transfer switch (ATS) with isolation bypass located in Building 103 Main Electrical Room. The feed from the ATS will be routed in an existing 3 ½" conduit that stubs up in the vicinity of the new CT/Radiology renovation.

Emergency lighting and miscellaneous power will be fed from the existing emergency panels located in electrical room 136.

- <u>Convenience Receptacles</u>: Convenience receptacles shall be provided in accordance with the VA design guide placement of receptacles for CT rooms, radiology rooms, and control rooms. Control desks will be provided with receptacles above and below the desk for console equipment. All convenience receptacles located in the CT room, radiology room, and control room will be connected to emergency power. The waiting room will be provided with a convenience receptacle for cleaning.
- Mechanical Systems: All new mechanical systems will be provided with new branch circuits and local disconnect switches as required in accordance with VA Electrical Design Standards. Equipment will be connected to emergency power.
- <u>Phone and Data</u>: Phone and data outlets will be provided in accordance with VA electrical design guide for CT rooms, radiology rooms, and control rooms. All data and phone outlets shall be tied into the building's existing system.
- <u>Nurse Call</u>: Code blue dome lights shall be provided at the doors of the CT and Radiology rooms. Code blue nurse call stations shall be provided in the CT and Radiology control rooms and their respective patient treatment areas.
- Electrical Loads:

Lighting: 5kVA (fed from ELEC 136)
Power: 4.2kVA (fed from ELEC 136)

CT: 20kVA X Ray: 2.6kVA AHU: 13.1kVA Total Emergency Load on New Panel: 44.9kVA

- <u>Emergency power</u>: The following equipment shall be placed on emergency power:
 - Convenience receptacles in CT, radiology, and control rooms.
 - Lighting in CT, radiology, waiting, and control rooms.
 - The new AHU serving the new rooms.
 - The CT scanner and X Ray.
- Method of short circuit calculations: The method of short-circuit analysis will be calculated with SKM software. The DAPPER Comprehensive Fault Analysis program provides a network solution of three-phase, single-line to ground, line-to line, and double line to ground fault currents; RMS momentary fault currents; asymmetrical fault duties at three, five, and eight cycles; the positive, negative, and zero sequence impedance values between each fault location, and contributions from utilities, generators, and motors. At each fault location, the direction, X/R, and magnitude of fault currents are reported, thus providing a clear view of the conditions that exist during the fault.
- Method of voltage drop and demand calculations: The method of voltage drop and demand analysis will be calculated with SKM software. The DAPPER module calculates the voltage drop on each feeder and transformer branch, voltage on each bus, projected power flow, and losses in the power system. The program is be used for conventional voltage drop analysis, loss analysis, power factor studies, capacitor placement, long-line charging effects, impact loading for motor starting studies, generator sizing, and for cogeneration analysis. The DAPPER module calculates a single load flow program models loop and radial power systems.
- <u>Utility Company Correspondence</u>: There is no utility company correspondence or requirements required for this project. A new electrical service will not be provided by the utility company. All power for the new renovation will be provided from the existing VA building distribution system.

PLUMBING

1. GENERAL

- .1 The plumbing systems will be in accordance with the DVA Plumbing Design Manual; Revised April 2010.
- .2 The plumbing codes and standards planned to be utilized are the latest editions of:
 - International Building Code (IBC)
 - International Fire Code (IFC)
 - International Mechanical Code (IMC)
 - International Plumbing Code (IPC)

2. EXISTING CONDITIONS

Currently the CT/Radiology renovation at Building 101 of the Lebanon VA Medical Center is provided with a potable water and sanitary drainage system for plumbing fixtures, storm drainage system and medical air, vacuum and oxygen service capped for future within the area. These existing plumbing fixtures and associated piping systems within the renovated areas are to be removed back to the mains and capped.

3. DESIGN APPROACH

- .1 Potable Domestic Water Service:
 - Within the renovated areas domestic hot and cold water will be extended from the existing piped distribution systems to new sinks.
 - All domestic hot water and cold water piping shall be type "L" seamless copper tubing, for use with solder type fittings. Fittings for copper tubing shall be wrought copper or cast bronze. Valves for copper tubing shall have bronze bodies. Solder used in the domestic water systems shall be "lead-free" type containing less than 0.2 percent lead content. All piping shall be insulated and labeled every 20'-0".
 - All plumbing piping and appurtenances shall be braced and anchored for seismic requirements in accordance with the 2009 International Building Code, SMACNA requirements, and NFPA recommendations.

.2 Sanitary Waste and Vent system:

- All new sink drains will be provided with a DWV copper piped gravity drainage system into the existing sanitary waste system below the existing slab and existing vent piping above the finished ceiling.
- All plumbing piping and appurtenances shall be braced and anchored for seismic requirements in accordance with the 2009 International Building Code, SMACNA requirements, and NFPA recommendations.

.3 Medical Gas and Vacuum systems:

- Medical oxygen and vacuum required at outlets in the CT Scanning and Radiology rooms will be supplied from the existing capped medical oxygen and vacuum piping near the waiting room. These lines will be provided with a zone valve box. Piping shall be installed and certified to meet the requirements of a Level I Medical Piped Gas and Vacuum System in accordance with NEPA 99C 200d Gas and Vacuum Systems, NFPA 99 Health Care Facilities, and 2006 AIA Guidelines for Design Construction of Hospital and Health Care Facilities.
- Medical oxygen and vacuum piping shall be constructed of Type K or L, ASTM B819 Medical Gas Tube Service copper tube with brazed joints per NFPA 99C, Service, zone, and in-line valves shall be located in accordance with NFPA 99C. Zone valve boxes, pressure switches, and alarms shall be located as specified and in accordance per NFPA 99C. Identify piping and valves as per NFPA 99C. Piping shall be supported in accordance with MSS SP-58 and 69.
- Piping shall be seismically protected in accordance with the 2006 IBC. Piping shall connect to existing mains in ceiling.
- Medical gas station wall and ceiling outlets shall be made of brass, securely
 mounted, and self-sealing in accordance with NFPA-99C and UL listed. Station
 outlets shall be equipped with non-interchangeable quick disconnect couplers.
- Medical oxygen and vacuum systems shall be tested and certified in accordance with NFPA-99 requirements.

4. WATER USAGE

- .1 Plumbing design of the new domestic water system will employ water saving techniques to reduce the amount of potable water usage. Low flow fixtures will be used as a water usage reduction measure in order to meet the minimum sustainable design requirements set forth by the VA.
- .2 Maximum flow rates and consumption for select plumbing fixtures that will be included in this project are:

Lavatories: 0.5 Gallons Per Minute (GPM).
 Sinks: 2.5 Gallons Per Minute (GPM).

5. PLUMBING FIXTURES

.1 Exact plumbing fixture types and locations will be coordinated as room configurations are finalized. The following plumbing fixtures are referenced in the VA Design Manual PG-18-10, Plumbing Design Manual:

P-Number	Description
402	Lavatory
528	Sink

FIRE PROTECTION

1. GENERAL

- .1 The fire alarm and fire protection systems will be in accordance with the DVA Fire Protection Design Manual; Sixth Edition; Revised September 2011.
- .2 The fire protection codes and standards planned to be utilized are the latest editions of the National Fire Codes (NFC) as published by the National Fire Protection Association (NFPA) and VA guide lines. Where fire alarm or fire protection features are not addressed by the NFC, the International Building Code (IBC) or other referenced standard shall be used. For the renovations, the following NFC standards for the base code references.
 - NFPA 101 Life Safety Code
 - NFPA 13 Standard for the Installation of Sprinkler Systems
 - NFPA 72 National Fire Alarm and Signaling Code

Should the codes from the International Code Council (ICC), need to be consulted, the following form the base code references.

- International Building Code (IBC)
- International Fire Code (IFC)
- International Fuel Gas Code (IFGC)
- International Mechanical Code (IMC)
- International Plumbing Code (IPC)

2. EXISTING CONDITIONS

- .1 The design of the CT/Radiology renovation at Building 101 of the Lebanon VA Medical Center will integrate into the systems and services of the project.
 - Fire Alarm System Proposed/new initiation devices and notification devices are connected to the FACP either directly or through Fire Alarm Terminal Cabinets (FATC) located in the Lobby floor. The existing fire alarm system is addressable, and any new devices will be compatible with the addressable system.
 - Fire Protection System The existing wet pipe sprinkler system will be modified as necessary to support the proposed renovated areas new functions.

3. DESIGN APPROACH

- .1 Fire Alarm System:
 - The fire alarm system for the renovation will connect to, and extend from, the existing building fire alarm system.
- .2 Fire Protection System:
 - The renovated building areas are currently equipped throughout with an automatic sprinkler system in accordance with the requirements of NFPA 13.

Where possible existing heads well be relocated as required and additional heads installed if needed to provide required coverage for the new architectural layout.

- The renovated areas shall be designed as an NFPA 13, Light Hazard system hydraulically calculated utilizing the area density method by the contractor for 0.10 gpm per sq.ft over 1500 sq.ft. Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply (to be determined).
- The fire protection system shall utilize all Schedule 40 pipe and fittings except within the CT Scanning room which will be provided with copper piping. All other components shall be rated for 300 psi. Sprinkler heads in areas with acoustic tile ceilings shall be chrome plated, recessed heads with chrome plated escutcheons. Areas with unfinished exposed ceilings will be provided with rough brass upright heads. Sprinklers throughout to be ordinary temperature rated except for electrical rooms/closets shall be intermediate temperature rated and mechanical rooms to be provided with high temperature rated heads.

STRUCTURAL

- 1. General Item: It has come to the attention of the design team that construction of new multi-story buildings, under separate projects, adjacent to the existing one-story Building 101 is proposed. These proposed adjacent buildings may cause an increase in the roof loading due to snow drifts. The existing roof structure of Building 101 should be analyzed to determine its capacity to support any increased snow loading.
- 2. Applicable Codes and Standards
 - International Building Code 2009 Edition
 - American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures - ASCE 7-05
 - Department of Veterans Affairs Seismic Design Requirements H-18-8
 - VA Program Guide PG-18-15 Volume C
 - VA Structural Design Manual For Hospital Projects August 2009
 - American Concrete Institute Building Code Requirements for Structural Concrete – ACI 318-08
 - American Institute of Steel Construction Manual of Steel Construction -Thirteenth Edition - AISC 360-05
 - American Welding Society Structural Welding Code for Steel ASW D1.1
 - American Society for Testing and Materials ASTM Standards

3. Design Loads

- 1. Dead loads for the purpose of structural design are the actual self-weight of the permanent building construction materials. In addition to the self-weight of the structure, the following additional dead loads will be included in the design:
 - Rooftop HVAC Unit: 5,500 LBS (+/-) on Roof
 - CT Machine: 5,500 LBS (+/-) on Slab
 - X-Ray Machine: 2,500 LBS (+/-) on Slab
 - 750 LBS (+/-) on Underside of Roof

2.	Design live loads to be supported are as follows:						
	•	Radiology Service	250 PSF on Slab				
3.	Snow	Load:					
	•	Ground Snow Load (Pg)	30 PSF				
	•	Snow Importance Factor (Is)	1.2				
	•	Exposure Factor (Ce)	1.0				
	•	Thermal Factor (Ct)	1.2				
4.	Wind	Load:					
	•	Basic Wind Velocity	90 MPH (3-second gust)				
	•	Exposure Category	В				
	•	Wind Importance Factor (Iw)	1.15				
5.	Seism	nic Load:					
	•	Occupancy Category	IV				
	•	Seismic Importance Factor (Ie)	1.5				
	•	0.2 Second Spectral Response Acceleration	Ss 0.228g				
	•	1.0 Second Spectral Response Acceleration	S1 0.057g				
	•	Soil Site Classification	C				
	•	Seismic Design Category	C				
	•	Seismic Force-Resisting System: Steel Brac	ed/Moment Frames				
	•	Analysis Procedure: Equivalent Lateral Ford	ce				
6.	All lo	ad combinations shall be in conformance with	listed codes and standards.				

4. Structural Systems

1. Foundation System: The proposed CT and X-Ray units are to be supported on the existing concrete slab on grade.

2. Superstructure:

- The proposed X-Ray unit requires components to be supported from the underside of the roof structure. The existing roof is composed of metal deck supported on steel open-web joists, which are in turn supported on steel beams. Any suspended loads will be supported from the chords of the existing joists. Additional steel angle web members may be added to reinforce existing joists at point load locations. Additional steel framing will be added as required, based on the loading and support requirements of the selected equipment.
- The proposed rooftop HVAC unit will be supported on a steel dunnage frame. This frame will be constructed above the existing roof structure, and will be supported from existing steel columns. These existing columns will be extended through the roof to support the steel dunnage framing. Additional steel framing will be added to the existing roof structure to allow mechanical penetrations.
- 3. Structural System Selection: The structural system was selected as the optimum structural system for the equipment requirements.

5. Structural Materials

1. Concrete

- Minimum Compressive Strength: f'c=4,500 psi
- Maximum Water-Cementitious Materials Ratio: 0.45
- Minimum Cementitious Materials Content: 500 lb/cu. yd.
- Air Content: 4.5 to 5.5 percent
- Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- Normal-Weight Aggregates: ASTM C 33, coarse aggregate or better, graded. Maximum Coarse-Aggregate Size: 1 1/2 inch nominal.
- Air-Entraining Admixture: ASTM C 260.
- High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.

2. Structural Steel

• Rectangular and Square HSS: ASTM A 500/A 500M, Grade B (Fy = 46 ksi).

- Round HSS: ASTM A500, Grade B (Fy = 42 ksi).
- Channels, Angles, M, S-Shapes: ASTM A 36/A 36M (Fy=36 ksi).
- Plate: ASTM A 36/A 36M (Fy=36 ksi).
- Wide Flange Shapes: ASTM A992 (Fy = 50 ksi)

6. Structural Special Inspections

1. In accordance with Section 1704 of the international building code, and all applicable state and local requirements, an independent approved agency shall make periodic and/or continuous inspections of the construction progress in accordance with the following requirements:

Steel Construction Section 1704.3, Table 1704.3 Concrete Construction Section 1704.4, Table 1704.4

CRITICAL PATH METHOD (CPM)

1. PROJECT MASTER SCHEDULE

- .1 Refer to Appendix A for the Project Master Schedule, which shows the projected overall schedule from the Design Phase Services Notice-To-Proceed (NTP), to the final turnover after completion of the design.
- .2 The schedule is not final and will be expanded and updated throughout the design and construction of this project.

2. PHASING

.1 This schedule is presented without taking into account equipment purchasing and the completion of construction of adjacent Building 103.

APPENDIX A

CRITICAL PATH METHOD (CPM) PROJECT SCHEDULE

CT/Radiology Room for Emergency Department VA Project # 595-11-126

ID	Task Name	Calendar	Start	Finish	%	10,000 # 000 11 120							
		Days from			Complete	Qtr 1, 2012 Qtr 2, 2012	Qtr 3, 2012	Qtr 4, 2012	Qtr 1, 2013	Qtr 2, 2013	Qtr 3, 2013	Qtr 4, 2013	Qtr 1, 2014
1	Kick-Off Meeting (PDT Meeting #1)	Kick-Off 0 days	6/15/12	6/15/12	100%	Jan Feb Mar Apr May Jun ting (PDT Meeting #1) ◆	Jui [Aug Sep]		jjan reblivia	<u>i [Apr]iviay[Jun</u>	ı Jui (Aug)Sep	Octinovidec	Jan Febliviar
2		-											
3	Contract Amendment NTP	117 days	10/9/12	10/9/12	100%	Contract Ame	ndment NTP	<u> </u>					
4		-											
5	SCHEMATIC SUBMISSION PHASE	160 days	10/10/12	11/21/12	100%			sci	HEMATIC SU	BMISSION PH	IASE		
6	Prepare Schematic Design Documents/Report	148 days	10/10/12	11/9/12	100%			Prepa	ire Schematio	Design Docu	्। ıments/Report	<u> </u>	
7	Schematic Phase PDT Meeting	159 days	11/20/12	11/20/12	100%	Schematic P	hase PDT Me	eting 🔖			_		
8	VA Approval to Proceed to Design Phase	160 days	11/21/12	11/21/12	100%	VA Approval to Procee	i d to Design F	Phase					
9	-	-					_						
10	Design Development (25%) SUBMISSION PHASE	182 days	11/22/12	12/13/12	100%			-	Design Deve	opment (25%)	SUBMISSION	N PHASE	
11	Prepare 25% DD Documents	174 days	11/22/12	12/5/12	100%			≟ Pı	repare 25% D	D Documents			
12	25% Design Development Phase PDT Meeting	182 days	12/13/12	12/13/12	100%	25% Design Developme	nt Phase PDT	Meeting 💺					
13													
14	Design Development (75%) SUBMISSION PHASE	253 days	12/14/12	2/22/13	98%			-	De	sign Developi	ment (75%) Sl	JBMISSION P	HASE
15	Prepare 75% DD Documents	244 days	12/14/12	2/13/13	100%				Prep	are 75% DD D	ocuments		
16	75% Design Development Phase PDT Meeting	253 days	2/22/13	2/22/13	0%	75% Design D	evelopment F	Phase PDT M	leeting 🔖				
17													
18	Construction Documents (100%) SUBMISSION PHA	286 days	2/25/13	3/27/13	0%					Construction	n Documents	(100%) SUBN	IISSION PHA
19	Prepare 100% DD Documents	270 days	2/25/13	3/11/13	0%				<u></u>	repare 100%	DD Document	i ts	
20	100% Design Development Phase PDT Meeting	277 days	3/18/13	3/18/13	0%	100% Desig	n Developme	ent Phase PD	T Meeting 💺	- The state of the			
21	3 Sets of CBD Documents to VA	286 days	3/27/13	3/27/13	0%		3 Sets of	f CBD Docun	nents to VA				
22													
23	CONSTRUCTION PHASE	566 days	3/28/13	1/1/14	0%								CONSTRU
24	Advertisement & Bid Award	314 days	3/28/13	4/24/13	0%					Advertis	sement & Bid	Award	
25	Construction Kick-Off Meeting	314 days	4/24/13	4/24/13	0%		Co	nstruction K	ick-Off Meeti	ng 📥			
26	Mobilization	342 days	4/25/13	5/22/13	0%					Mob	ilization		
27	Construction	510 days	5/23/13	11/6/13	0%							Constr	uction
28	Project Close-Out	566 days	11/7/13	1/1/14	0%								Project Clo
29	Final Turnover	566 days	1/1/14	1/1/14	0%						Fir	al Turnover	*

APPENDIX B

ARCHITECTURAL

B-1

CT Suite

Key Plan

CT Scanning Room (XCTS1)

430 NSF

Floor Plan 39.9 NSM

Radiology Service Design Guide	April 2008
CT Scanning Room (XCTS1)	430 NSF
Reflected Ceiling Plan	39.9 NSM

The locations and quantities of the air outlets and inlets are tentative and may not represent the optimum design solution(s) envisioned by the designer, who shall study the layout, calculate air volumes, and may alter the arrangement shown in the reflected ceiling plan, as required, to produce a project—specific air distribution system design.

CT Control Room (XCTC1)

140 NSF

Floor Plan 13.0 NSM

Radiology Service Design Guide	April 2008
CT Control Room (XCTC1)	140 NSF
Reflected Ceiling Plan	13.0 NSM

The locations and quantities of the air outlets and inlets are tentative and may not represent the optimum design solution(s) envisioned by the designer, who shall study the layout, calculate air volumes, and may alter the arrangement shown in the reflected ceiling plan, as required, to produce a project—specific air distribution system design.

CT SUITE (XCTS1 & XCTC1): **Design Standards**

ARCHITECTURAL

Acoustical Tile Ceiling Ceiling: Ceiling Height: Coordinate with

Equip. Manuf.

Wall Finish: Paint Wainscot: Base: Vinyl Base Floor Finish: Vinyl Composition Tile Sound Protection:

Notes:

- 1. Provide a 4'-0" wide shielded door into the CT Scanning Room
- 2. Provide a shielded viewing window from CT Control Room to the CT Scanning Room.

LIGHTING

CT Scanning Room

General: Fluorescent lights will provide higher illumination level up to 50 FC during patient transfer on and from the table, equipment setting, room cleaning, and equipment maintenance.

Special: Incandescent luminaires controlled by dimmer will provide lower illumination levels down to 5 FC during scanning. Luminaires shall be located to avoid direct glare for patient comfort.

CT Control Room

General: Fluorescent lights will provide higher illumination level up to 30 FC for room cleaning, and equipment maintenance.

Special: Incandescent luminaires controlled by dimmer will provide lower illumination levels down to 5 FC during scanning for monitor viewing.

Notes:

- 1. 2'x2' fluorescent recessed luminaire. acrylic prismatic lens, with (2) FB031T8-U lamps, 4100 K, CRI=85 (Minimum)
- 2. 8-inch dia., recessed incandescent downlight, with recessed Fresnel

- lens, and 150W/A21 inc. horizontally mounted lamp.
- 3. 2'x4' fluorescent recessed luminaire, acrylic prismatic lens, with (3) F32T8 lamps, 3500 K.
- 4. CT Scanning Room fluorescent lighting controlled by 3-way switches located at entrance door and in control area
- 5. CT Scanning Room incandescent downlighting controlled by 3-way dimmers located in CT room and control area.
- 6. CT Control Room incandescent downlighting controlled by separate dimmer located in control area.

POWER

The electrical power as shown is to be used as a guide only. Equipment locations, dimensions and wiring requirements should be per the CT suppliers' equipment system drawings. Electrical trades should provide necessary conduits, openings, bushings, nipples, flexible conduits, surface, recessed, wall mounted and floor raceways, etc., as required at the various junction boxes, duct and conduit terminations to allow proper connections of the CT equipment and related accessories

Emergency:

Emergency power for CT equipment, controls, and selected receptacles as determined by the Hospital

Notes:

- 480V, 3P-150A circuit breaker, with 1. adjustable trip, shunt trip, flush mounted. Run empty 50 mm (2"C) from circuit breaker to the floor duct.
- 2. 300 mm x 90 mm (12" W x 3-1/2" D) multi-compartment flush floor duct with screw-on cover. Connect to vertical wall duct.
- 3. 250 mm x 90 mm (10" W x 3-1/2" D) multi-compartment surface vertical wall duct with screw-on cover. Connect to CT floor duct and horizontal wall duct.

Guide Plates 4-71

- 120 mm x 90 mm (4-3/4" W x 3-1/2" D) multi-compartment surface wall duct with screw—on cover. Connect to vertical wall duct.
- Emergency Power Off pushbutton station. Refer to specific radiology equipment requirements for EPO. Connect to shunt trip at main disconnect.
- Door switch with NO/NC contacts. Connect to CT system control circuit. CT should shut-off upon opening of the entrance door.
- 7. Magnetic door interlock with CT controller to prevent interruption of scanning procedure (optional).
- 8. Warning light with wording "CT IN USE, DO NOT ENTER". Provide interface with CT controller via interface relay.
- CT warning light interface relay with low voltage power supply to match CT equipment requirements.

COMMUNICATION/SPECIAL SYSTEMS

ADP: Yes Data: Yes Telephone: Yes Intercom: Yes Nurse Call: Public Address: Radio/Entertainment: MATV: CCTV: Yes, note 1 & 2. MID: Security/Duress: VTEL: VA Satellite TV: Notes:

- Junction box for CCTV camera with conduit to Control area.
- 2. Junction box for CCTV monitor.
- 3. PACS:two 4-port telecommunication outlets per PACS station

HEATING, VENTILATING AND AIR CONDITIONING

Inside Design Conditions: 70 °F - 75 °F (21 °C - 24 °)

30% to 60% Relative humidity

Minimum Air Changes per hour: - Supply Air

6 for CT Scanning Room 6 for CT Control Room

100% Exhaust: No 100% Outside air No Room Air Balance: Positive for all rooms
Dedicated Exhaust System: No
Occupancy: 4 for CT Scanning Room
2 for CT Control Room

AC Load-(Equipment): 17,000 Btuh – 22,000BTUH (5,000W – 6,500 W) for CT Scanning Room.

4,000 Btuh – 8,500 Btuh (1,200W-2,500 W) for CT Control Room.

AC Load-Lighting: 2.0 W/SF (21 W/ M^2) in CT Scanning Room 1.5W/SF (17 W/ M^2) in CT Control Room.

Notes:

- 1. Verify cooling loads and other specific requirements with the equipment manufacturer on a specific project.
- Certain CT Manufacturers require, and provide a dedicated CT Scanner chiller. This chiller should be installed per CT manufacturer's requirements.

PLUMBING AND MEDICAL GASES

Cold Water:	Yes
Hot Water:	Yes
Laboratory Air:	
Laboratory Vacuum:	
Sanitary Drain:	Yes
Reagent grade Water:	
Medical Air:	Yes
Medical Vacuum:	Yes
Oxygen:	Yes

Notes:

- 1. Provide a floor drain to coordinate with chilled water equipment when required
- 2. Provide a backflow prevention device when a secondary emergency water connection to the chilled water equipment is required as a backup

Guide Plates 4-72

CT SUITE (XCTS1 & XCTC1): Equipment Guide List

	CT Scanning Room		ACQ /		
JSN	NAME	QTY	INS	DESCRIPTION	SPEC
A1010	Telecommunication Outlet	1	CC	Telecommunication outlet location.	27 31 00
A1012	Telephone, Wall Mounted, 1 Line	1	CC	Telephone, wall mounted, 1 line.	27 31 00
A1066	Mirror, Float Glass, With SS Frame	1	CC	A high quality 1/4" polished float glass mirror 36X18, framed in a one-piece, bright polished, stainless steel channel frame with 90° mitered corners. All edges of the mirror are protected by absorbing filler strips. Mirror has a galvanized steel back with integral horizontal hanging brackets and wall hanger for concealed mounting. For mounting above single wall mounted lavatories located in toilet areas, Doctors examination offices, etc. May also be used above double lavatories, either wall or countertop mounted, found in restroom areas.	10 28 00
A5075	Dispenser, Soap, Disposable	1	W	Disposable soap dispenser. One-handed dispensing operation. Designed to accommodate disposable soap cartridge and valve.	
A5080	Dispenser, Paper Towel, SS, Surface Mounted	1	cc	A surface mounted, satin finish stainless steel, single-fold, paper towel dispenser. Dispenser features: tumbler lock; front hinged at bottom; and refill indicator slot. Minimum capacity 400 single-fold paper towels. For general purpose use throughout the facility.	10 28 00
A5106	Waste Disposal Unit, Sharps w/Glove Dispenser	1	W	The unit is designed for the disposal of sharps and complies with OSHA guidelines for the handling of sharps. It shall house a 5 quart container and be capable of being mounted on a wall. It shall have a glove dispenser attached. The unit shall be secured by a locked enclosure.	

C03H0	Cabinet, U/C/B, 2 Half Drawers, 3 DR, 36x30x22	1	CC	Standing height under counter base cabinet with two half width drawers side-by-side above three full width drawers. Also referred to as a drawer cabinet. For general purpose use throughout the facility.	12 32 00
C03J0	Cabinet, U/C/B, 8 Half Drawers, 36x30x22	1	CC	Standing height under counter base cabinet with eight half width drawers of equal height. Also referred to as a drawer cabinet. For general purpose use throughout the facility.	12 32 00
C03P0	Cabinet, Sink, U/C/B, 2 Door, 30" W	1	CC	Standing height under counter base sink cabinet. 36" H x 30" W x 22" D with two solid hinged doors. Also referred to as a double-door sink cabinet. For general purpose use throughout the facility where a sink is to be used. Coordinate actual clear cabinet dimension with the actual outside dimension of sink that is specified to ensure that they are compatible.	12 32 00
CE030	Cabinet, W/H, 2 SH, 2 GDO, Sloping Top, 38x30x13	1	СС	Wall hung cabinet with two adjustable shelves, framed-glass hinged doors, and sloping top. Also referred to as a framed-glass hinged double door wall case. For general purpose use throughout the facility.	12 32 00
CS140	Sink, SS, Single Compartment, 10x14x16 ID	1	CC	Single compartment stainless steel sink, drop-in, self-rimming, ledge-type, connected with a drain and provided with a mixing faucet. It shall also be provided with punched fixture holes on 4" center, integral back ledge to accommodate deck-mounted fixtures, brushed/polished interior and top surfaces, and sound deadened. Recommended for use in suspended or U/C/B sink cabinets having a high plastic laminate or Chemsurf laminate countertop/work surface. Coordinate actual outside sink dimensions with the actual clear dimension of cabinet specified to ensure that they are compatible. For general purpose use throughout the facility.	22 40 00

		•	1		T
CT030	Countertop, High Pressure Laminate	AR	CC	High pressure laminate countertop (composition of wood particle core with plastic laminate surface) having a hard smooth surface finish, standard thickness of 1", and a 4" butt backsplash/curb. Also referred to as a work surface or work top. Available in a wide choice of colors, patterns, and depths. Used in general purpose areas requiring a basic work surface arrangement with limited heat resistance and poor chemical resistance. Pricing based upon a 24" depth.	12 36 00
F0355	Footstool, Straight	1	W	Step stool. Used to assist patients getting on and off exam or surgical tables. Fitted with electrically conductive rubber tips.	
F2000	Basket, Wastepaper, Round, Metal	1	W	Round wastepaper basket, approximately 18" high X 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.	
F3200	Clock, Battery, 12" Diameter	1	W	Clock, 12" diameter. Round surface, easy to read numbers with sweep second hand. Wall mounted unit for use when impractical to install a fully synchronized clock system. Battery operated, (batteries not included).	
M0750	Flowmeter, Air, Connect w/50 PSI Supply	1	W	Air flowmeter. Unit has a stainless steel needle valve with clear flowtube for connection to 50 PSI air outlet from central pipeline system. Requires the appropriate adapter for connection to the wall outlet and fitting to connect to tubing. Database prices reflect fittings with an attached DISS power outlet. Other outlet and adapter configurations are available.	22 63 00
M0755	Flowmeter, Oxygen, Low Flow	1	W	Oxygen flowmeter. Consists of a clear crystal flowtube calibrated to 3.5 or 8 LPM depending on manufacturer. For oxygen regulation in hospital settings. Database pricing includes DISS fitting and DISS power outlet and wall adapter. Other fitting and adapter configurations are available.	22 63 00

	T =			1	
M0765	Regulator, Vacuum	1	W	An air/oxygen mixer is designed to accurately control a pressurized gas mixing with an oxygen concentration. Unit contains audible alarms to warn of supply failure, an auxiliary outlet and a oxygen concentration control adjustment range from 21% to 100%. The unit can also be used to supply an accurate pre-mixed gas source to respiration or ventilator units. A specific application may require an additional air inlet filter/water trap.	22 62 00
X3150	Rack, Apron/Gloves, Wall Mounted	1	CC	Apron and gloves rack. This is a wall unit which holds aprons and gloves. The body is heavy gauge steel finish in gray or green baked enamel, glove and apron holding arms are aluminum. The unit's convenient on wall storage will prolong the useful life of your protection aprons by helping prevent damage to internal components.	
X6196	Injector, CT	1	CF	This unit is a specialized radiographic system that provides sharp, well-defined visual images of the vascular anatomy. The injector introduces a vision radiopaque fluid (contrast medium) into an artery or vein through a small catheter, making vessels contrast with their more radiolucent surrounding. The unit incorporates an electromechanical or pneumatically driven syringe to deliver the contrast medium. The syringe assemblies consist of an electric motor connected to a jackscrew that moves the syringe piston into or out of the syringe barrel. The unit is used in hospitals with radiographic procedures. The unit can be ceiling, wall, or remote stand mounted.	

X6240	Radiographic Unit, Computerized Tomography (CT)	1	CF	The CT Scanner System is an noninvasive radiographic technique that involves the reconstruction of a tomographic plane of the body (four slices per revolution) from a large number of collected x-ray absorption measurements taken during a scan around the body's periphery. The CT System shall be a single gantry, whole body scanning system appropriate to support tertiary care facilities with an annual projected workload of less than 5,500 separate studies. System includes DICOM 3.0 or latest version software protocol. System to be	
				procured with turnkey installation.	
XCTC1 -	Control Room				
ICN	NAME	OTV	ACQ /	DECODIDATION	CDEO
JSN A1010	NAME Telecommunication Outlet	QTY	INS CC	DESCRIPTION Telecommunication outlet	SPEC 27 31 00
Alolo		•		location.	
A1012	Telephone, Wall Mounted, 1 Line	1	CC	Telephone, wall mounted, 1 line.	27 31 00
A5145	Hook, Garment, Double, SS, Surface Mounted	1	CC	A surface mounted, satin finish stainless steel, double garment hook. Equipped with a concealed mounting bracket that is secured to a concealed wall plate. For general purpose use throughout the facility to hang various items of apparel.	10 28 00
C0044	Frame, Apron, 1 Drawer, 4x30x22	1	CC	Apron frame with one standard drawer. Also referred to as a drawer frame or table frame. Used for a knee space as a combination frame and drawer to support a top between base cabinets or a base cabinet and a wall.	12 32 00
C0045	Frame, Apron, 1 Drawer, 4x36x22	2	CC	Apron frame with one standard drawer. Also referred to as a drawer frame or table frame. Used for a knee space as a combination frame and drawer to support a top between base cabinets or a base cabinet and a wall.	12 32 00
C06M0	Cabinet, U/C/B, 1 PBD, 2 DR, 1 File DR, 30x18x22	3	CC	Cabinet, U/C/B, 1 PBD, 2 DR, 1 File DR, 30x18x22	12 32 00

07000	T			1	10.00.00
CT030	Countertop, High Pressure Laminate	AR	CC	High pressure laminate countertop (composition of wood particle core with plastic laminate surface) having a hard smooth surface finish, standard thickness of 1", and a 4" butt backsplash/curb. Also referred to as a work surface or work top. Available in a wide choice of colors, patterns, and depths. Used in general purpose areas requiring a basic work surface arrangement with limited heat	12 36 00
				resistance and poor chemical resistance. Pricing based upon a 24" depth.	
F0275	Chair, Swivel, High Back	2	W	Highback contemporary swivel chair, 41" high X 23" wide X 23" deep with five (5) caster swivel base and arms. Chair may be used at desks or in conference rooms. Back and seat are foam padded and upholstered with either woven textile fabric or vinyl.	
F2000	Basket, Wastepaper, Round, Metal	1	W	Round wastepaper basket, approximately 18" high X 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.	
F3050	Whiteboard, Dry Erase	1	CC	Whiteboard unit, approximately 36" H x 48" W consisting of a white porcelain enamel writing surface with an attached chalk tray. Magnetic surface available. Image can be easily removed with a standard chalkboard eraser. For use with water color pens. Unit is ready to hang.	
F3200	Clock, Battery, 12" Diameter	1	W	Clock, 12" diameter. Round surface, easy to read numbers with sweep second hand. Wall mounted unit for use when impractical to install a fully synchronized clock system. Battery operated, (batteries not included).	

April 2008

M1801	Computer, Microprocessing, w/Flat Panel Monitor	1	W	Desk top microprocessing computer. The unit shall consist of a central processing mini tower, flat panel monitor, keyboard, mouse and speakers. The system shall have the following minimum characteristics: a 2.8 GHz Pentium processor; 512 MB memory; 80GB hard drive; 32/48x CD-ROMDVD combo; a 3.5" floppy drive; 1.44MB network interface card; video 32 MB NVIDIA; a 15 inch flat panel color monitor. The computer is used throughout the facility to input, manipulate and retrieve information.
M1840	Printer/Copier/Fax Combination	1	W	Multifunctional printer, fax, scanner and copier (PFC) all- in-one machine.
X1425	Imager, Laser (1024 X 1024) (Din/PACS)	1	CF	Laser imager. An infrared laser beam is scanned across the film by a precision rotating polygon, while correcting optic focus and controlling the beam's intensity. The characteristics and components include an automatic film handling system and uses 10" X 14" IR film. It can be interfaced to additional imaging modalities with optional interface kit. For use with digital output imaging modalities.
X4112	Console, PACS, Remote View, 1k X 1k, 2 Monitors	1	CF	Two monitor remote viewing station for picture archiving and retrieval (PACS) system. This station is for use by providers inside or outside of radiology to review images. Station includes local image storage, image manipulation, and simultaneous display of multiple images on two 1024 x 1024 image display CRT's. Images are stored on a resident hard disk and roll off the disk as more recent images are sent to the station. Provider may request images from the PACS. Unit must be connected to the PACS by LAN for image and result receipt. This station is for use in areas like radiologist's offices and the E.R where a more comprehensive system is required. Console must be DICOM compliant. Input may be by keyboard, mouse, trackball or voice activated commands.

V0040	O	4	٥٦	The OT O O '	
X6240	Components of Parent	1	CF	The CT Scanner System is an	
	Item: Radiographic Unit,			noninvasive radiographic	
	Computerized Tomography			technique that involves the	
	(CT) may include:			reconstruction of a	
	Workstation with LCD			tomographic plane of the body	
				0 1 1	
	Monitors, Injector Conrtol			(four slices per revolution)	
	and electronic station, and			from a large number of	
	operator console and			collected x-ray absorption	
	computer			measurements taken during a	
	· .			scan around the body's	
				periphery. The CT System	
				shall be a single gantry, whole	
				body scanning system	
				appropriate to support tertiary	
				care facilities with an annual	
				projected workload of less	
				than 5,500 separate studies.	
				System includes DICOM 3.0	
				or latest version software	
				protocol. System to be	
				procured with turnkey	
				installation.	

General Purpose Radiology Room (XDR01)

300 NSF

Floor Plan 27.9 NSM

Guide plates are graphical representations of selected room types, illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

Radiology Service Design Guide	April 2008
General Purpose Radiology Room (XDR01)	300 NSF
Reflected Ceiling Plan	27.9 NSM

The locations and quantities of the air outlets and inlets are tentative and may not represent the optimum design solution(s) envisioned by the designer, who shall study the layout, calculate air volumes, and may alter the arrangement shown in the reflected ceiling plan, as required, to produce a project—specific air distribution system design.

Guide plates are graphical representations of selected room types, illustrating the integration of space, components, systems, and equipment. They provide typical configurations and general technical guidance, and are not intended to be project specific. Specific infrastructure design requirements are contained in VA Design Manuals and Space Planning Criteria located in the VA Technical Information Library.

GENERAL PURPOSE RADIOGRAPHIC ROOM (XDR01): Design Standards

ARCHITECTURAL

Ceiling: Acoustical Tile Ceiling
Ceiling Height: Coordinate with

Equipment Manufacturer

Wall Finish: Paint
Wainscot:
Base: Vinyl
Floor Finish: Vinyl Composition Tile

Sound Protection:

Notes:

- Provide a 4'-0" wide shielded door into the General Purpose Radiographic Room.
- 2. Provide a shielded viewing window from the Control Area to the General Purpose Radiographic Room.

LIGHTING

General: Fluorescent lights will provide higher illumination level up to 50 FC during patient transfer on and from the table, equipment setting, room cleaning, and equipment maintenance.

Special: Incandescent luminaires controlled by dimmer will provide lower illumination levels down to 5 FC during X-ray tube aiming and scanning. Warmer light color will enhance skin appearance and increase patient comfort.

Luminaires shall be located to avoid conflict with radiographic equipment ceiling tracks.

Notes:

- 2'x2' fluorescent recessed luminaire, acrylic prismatic lens, with (2) FB031T8-U lamps, 4100 K, CRI=85 (minimum)
- 8-inch diameter., recessed incandescent downlight, with recessed Fresnel lens, and 150W/A21 inc. horizontally mounted lamp.
- Fluorescent lighting controlled by 3way switches located at entrance door and in control area

- Incandescent down lighting in X-ray room controlled by dimmer located in Xray room.
- 5. Incandescent down lighting in control area controlled by separate dimmer located in control area.

POWER

The electrical power as shown is to be used as a guide only. Equipment locations, dimensions and wiring requirements should be per the x-ray system suppliers' equipment drawings. Electrical trades should provide necessary conduits, openings, bushings, nipples, flexible conduits, surface, recessed, wall mounted and floor raceways, etc., as required at the various junction boxes, duct and conduit terminations to allow proper connections of the x-ray equipment and related accessories.

Emergency:

Emergency power for x-ray equipment, controls, and selected receptacles as determined by the Hospital.

Notes:

- 1. 480V, 3P-150A circuit breaker, with adjustable trip, shunt trip, flush mounted. Run empty 50 mm (2°C) from circuit breaker to x-ray duct above finished ceiling.
- 2. 250 mm x 140 mm (10" W x 5-1/2" D) flush vertical wall duct with 300 mm (12") wide screw—on cover. Connect to x-ray duct above finished ceiling and terminate at finished floor.
- 3. 250 mm x 140 mm (10" W x 5-1/2" D) x-ray duct above finished ceiling with 250 mm (10") wide screw—on cover. Connect to vertical wall duct.
- Emergency Power Off pushbutton station. Refer to specific radiology equipment requirements for EPO. Connect to shunt trip at main disconnect.
- 5. Door switch with NO/NC contacts.
 Connect to x-ray machine control
 circuit. X-ray machine should shut-off
 upon opening of the entrance door.

Guide Plates 4-4

- 6. Warning light with wording "X-RAY ON DO NOT ENTER". Provide power, interface with x-ray machine via interface relay.
- 7. X-ray warning light interface relay with low voltage power supply to match x-ray equipment requirements.

COMMUNICATION/SPECIAL SYSTEMS

ADP: Yes Data: Yes Telephone: Yes Intercom: Nurse Call: Public Address: Radio/Entertainment: MATV: CCTV: MID: Security/Duress: VTEL: VA Satellite TV:

Notes:

PACS: two 4-port telecommunication outlets per PACS station

HEATING, VENTILATING AND AIR CONDITIONING

Inside Design Conditions: 70 °F - 75 °F (21 °C - 24 °)

30% to 60% Relative humidity

Minimum Air Changes per hour:

- Supply Air

100% Exhaust:
100% Outside air
Room Air Balance:
Dedicated Exhaust System:
Occupancy:
AC Load-Equipment:

No-See Note 2
No-See Note 2
No-See Note 2
Ac Positive
4 people
5,000 Btuh
13,500 Btuh
(1,500W-4000 W)

AC Load-Lighting: 1.6 W/SF (17 W/M²)

Notes:

- 1. Verify cooling loads and other specific requirements with the equipment manufacturer on a specific project.
- 2. Refer also to general requirements for mycobacterium tuberculosis in Radiology Department and HVAC Design Manual "TB Criteria".

PLUMBING AND MEDICAL GASES

Cold Water: Yes Hot Water: Yes Laboratory Air: Laboratory Vacuum: Sanitary Drain: Yes Reagent grade Water: Possible Medical Air: Yes Medical Vacuum: Yes Oxygen: Yes

Notes:

Guide Plates 4-5

GENERAL PURPOSE RADIOGRAPHIC ROOM (XDR01): Equipment Guide List

JSN	NAME	QTY	ACQ / INS	DESCRIPTION	SPEC
A1010	Telecommunication Outlet	1	CC	Telecommunication outlet location.	27 31 00
A1012	Telephone, Wall Mounted, 1 Line	1	CC	Telephone, wall mounted, 1 line.	27 31 00
A1066	Mirror, Float Glass, With SS Frame	1	CC	A high quality 1/4" polished float glass mirror 36X18, framed in a one-piece, bright polished, stainless steel channel frame with 90° mitered corners. All edges of the mirror are protected by absorbing filler strips. Mirror has a galvanized steel back with integral horizontal hanging brackets and wall hanger for concealed mounting. For mounting above single wall mounted lavatories located in toilet areas, Doctors examination offices, etc. May also be used above double lavatories, either wall or countertop mounted, found in restroom areas.	10 28 00
A5075	Dispenser, Soap, Disposable	1	VV	Disposable soap dispenser. One-handed dispensing operation. Designed to accommodate disposable soap cartridge and valve.	10 28 00
A5080	Dispenser, Paper Towel, SS, Surface Mounted	1	СС	A surface mounted, satin finish stainless steel, single-fold, paper towel dispenser. Dispenser features: tumbler lock; front hinged at bottom; and refill indicator slot. Minimum capacity 400 single-fold paper towels. For general purpose use throughout the facility.	10 28 00
A5106	Waste Disposal Unit, Sharps w/Glove Dispenser	1	VV	The unit is designed for the disposal of sharps and complies with OSHA guidelines for the handling of sharps. It shall house a 5 quart container and be capable of being mounted on a wall. It shall have a glove dispenser attached. The unit shall be secured by a locked enclosure.	
A5145	Hook, Garment, Double, SS, Surface Mounted	1	сс	A surface mounted, satin finish stainless steel, double garment hook. Equipped with a concealed mounting bracket that is secured to a concealed wall plate. For general purpose use throughout the facility to hang various items of apparel.	10 28 00

F0205	Chair, Side With Arms	1	VV	Upholstered side chair, 32" high X 21" wide X 23" deep with arms, padded seats and padded backs. Seat height is a minimum of 17". Available with or without sled base.
F0340	Stool, Self Adjusting	1	VV	Self adjusting stool. Consists of a foam padded upholstered seat with attached foot rest for added comfort. Mounted on swivel casters. Designed for doctor's use during examinations.
F0355	Footstool, Straight	1	VV	Step stool. Used to assist patients getting on and off exam or surgical tables. Fitted with electrically conductive rubber tips.
F3200	Clock, Battery, 12" Diameter	1	VV	Clock, 12" diameter. Round surface, easy to read numbers with sweep second hand. Wall mounted unit for use when impractical to install a fully synchronized clock system. Battery operated, (batteries not included).
E0948	Cart, General Storage, Mobile, 42"H x 32"W x 22"D	1	VV	THIS TYPICAL INCLUDES: 1 Cart Body, Style-A Narrow, w/Raised Edge Top 1 Accessory Rail, Side 2 Drawers, 3" H (76mm) 4 Drawers, 6" H (152mm) Drawer Organizer Bins
F2000	Basket, Wastepaper, Round, Metal	1	VV	Round wastepaper basket, approximately 18" high X 16" diameter. This metal unit is used to collect and temporarily store small quantities of paper refuse in patient rooms, administrative areas and nursing stations.
F3200	Clock, Battery, 12" Diameter	1	VV	Clock, 12" diameter. Round surface, easy to read numbers with sweep second hand. Wall mounted unit for use when impractical to install a fully synchronized clock system. Battery operated, (batteries not included).
M3070	Hamper, Linen, Mobile, w/Lid	1	VV	Mobile linen hamper with hand or foot operated lid. Made of heavy tubular stainless steel with heavy gauge welded steel platform. Holds 25" hamper bags. Mounted on ball bearing casters. For linen transport in hospitals and clinics.

M4255	Stand, IV, Adjustable	1	VV	Adjustable IV stand with 4-hook arrangement. Stand has stainless steel construction with heavy weight base. It adjusts from 66 inches to 100 inches and is mounted on conductive rubber, ball bearing, swivel casters. Stand is used for administering intravenous solutions.	
P3100	Lavatory, Vitreous China, Slab Type	1	С	Wall mounted, slab type, vitreous china, lavatory (approximate bowl size 7"x15"x10") with: faucet holes on 4" centers; gooseneck spout; wrist blade handles; and grid strainer. It shall be suitable for use in clinics, offices, washrooms or patient care area.	22 40 00
X1405	Stand, Bucky, Vertical, Tilt, Automatic	1	CF? This is VC on Old VA codes	Vertical and tilting bucky stand. This unit is mounted to the floor and wall to provide a vibration-free mounting platform for the universal bucky. The grid line free radiographs are produced at exposure times as short as two milliseconds. Characteristics and components include aluminum interspaced grid with a 36 inch (914 mm) to 40 inch (1016 mm) focal range. The unit's cassette size sensing tray accommodates all cassette sizes between 5 and 17 inches. The unit tilts at angles of +90/-20 degrees from the vertical position. The unit is used in X-ray facilities for processing radiography images.	
X3150	Rack, Apron/Gloves, Wall Mounted	1	CC	Apron and gloves rack. This is a wall unit which holds aprons and gloves. The body is heavy gauge steel finish in gray or green baked enamel, glove and apron holding arms are aluminum. The unit's convenient on wall storage will prolong the useful life of your protection aprons by helping prevent damage to internal components.	
X5900 (need new digital number)	Radiographic Unit, 80 kW, NonTilt Table	1	CF? This is VC on Old VA codes	This system is specifically designed to perform radiographic examinations in the Radiology Department. This units characteristics and components include, 80kW micro-processor controlled X-ray generator, a non-tilting table with a floating table top and an adjustable bucky, a ceiling suspended 0.6/1.2 mm tube unit and vertical bucky stand.	

153 Scarborough Lane Millersville, PA 17551 1-866-755-2756 1-866-755-2756 Fax info@keystonephysics.com www.keystonephysics.com

February 6, 2013

Kristin Seage, LEED AP Project Coordinator SPIEZLE GROUP, INC. 321 West State Street Media, PA 19063

Re: Lead shielding recommendations for Lebanon VA Medical ED CT / X-ray Rooms

Dear Ms. Seage:

I'm writing in reference to the lead (Pb) shielding recommendations for the X-ray and CT unit installations in the proposed remodeling for the Lebanon VA Medical Center. I have reviewed the blueprints that you forwarded to me by email attachment, and make the following recommendations to comply with exposure limits outside these rooms. These recommendations are made using the methodology outlined in report #147 from the National Council on Radiation Protection and Measurements, "Structural Shielding Design for Medical Imaging Facilities".

Construction Notes

- Shared walls are noted only one time throughout this report.
- The total recommended Pb thickness reported for a wall can be achieved by installing half of the recommended shielded thickness on each side of the wall studs. For example, a wall requiring 1/8" of Pb can have 1/16" Pb on one side of the studs and 1/16" Pb on the other side of the studs for a total of 1/8" Pb.
- If needed, lead can be stacked to achieve the desired thickness. For example, a 1/8" Pb requirement can be achieved by stacking 2 sheets of 1/16" Pb on one side of the stud wall.
- Lead shielding in a wall should extend from the floor to a height of 7 feet.
- No shielding is required in either the ceiling or the floor for these x-ray installations.

Room Shielding Specifications

General Radiography Room

- The wall (Wall A) separating the X-ray room from the Electrical Room and Bed Storage requires 1/32" Pb shielding.
- The wall (Wall B) separating the X-ray room from the Corridor requires 1/16" Pb shielding. The double Entry Door (B₁) between the X-ray room and the Corridor, including the astragal, requires 1/16" Pb shielding.
- Wall segment (Wall B₂) defined as a four foot wide portion of (Wall B) that is centered behind the Upright Film column, requires an additional 1/16" of Pb shielding. The total shielding needed behind the upright Film Column is 1/8" of Pb shielding.
- The wall (Wall C) separating the X-ray room from the CT Control Area requires 1/16" Pb shielding.
- The wall (Wall D) separating the X-ray room from the Operator Control Area requires 1/16" Pb shielding. All windows in the Operator Control wall require lead glass or acrylic of 1/16" Pb equivalence (1.58 mm).
- The wall (Wall E) separating the X-ray room from the Corridor requires 1/16" Pb shielding. The double Entry Door (E₁) between the X-ray room and the Corridor, including the astragal, requires 1/16" Pb shielding. See Appendix "A".

CT Scan Room

- The wall (Wall A) separating the CT Scan room from the X-ray Control room requires 1/8" Pb shielding on both portions of the wall around the counter.
- The wall (Wall B) separating the CT Scan room from the Operator Control area requires 3/32" Pb shielding. All windows in the Operator Control wall require lead glass or acrylic of 3/32" Pb equivalence (~2.38 mm).
- The wall (Wall C) separating the CT Scan room from the Corridor requires 1/16" Pb shielding. The shielding should extend from the intersection with the partition at the conference/lunch, through the entry doors, to a point approximately 4 feet behind the termination of the operator control wall. The double Entry Door (C₁) between the CT Scan room and the Corridor, including the astragal, requires 1/16" Pb shielding.
- The wall (Wall D) separating the CT Scan room from the Conference/Lunch requires 3/32" Pb shielding.
- The wall (Wall E) separating the CT Scan room from the Corridor requires 1/8" Pb shielding. The double Entry Door (E_1) between the CT Scan room and the Corridor, including the astragal, requires 1/8" Pb shielding. See *Appendix "B"*.

Please refer to the attached color-coded 'Shielding Diagrams' for a visual overview and clarification of the shielding recommendations for this project.

If you have any questions or need clarification, please contact me at 1-866-755-2756, extension #1.

Sincerely,

Jay M. Yoder, M.S., DABR Certified Medical Radiation Health Physicist

Reference:

National Council on Radiation Protection and Measurements Report #147, "Structural Shielding Design for Medical Imaging Facilities". November 19, 2004.

<u>APPENDIX – A</u>

Shielding Diagram: General Radiographic Room

Shielding Legend

1/32" Pb Shielding
1/16" Pb Shielding
 1/8" Pb Shielding

<u>APPENDIX – B</u>

Shielding Diagram: CT Scanner Room

Shielding Legend

1/16" Pb Shielding	
 3/32" Pb Shielding	
 1/8" Pb Shielding	

GE EQUIPMENT LISTING

EQUIPMENT QUOTED FROM GE MEDICAL SYSTEMS PER QUOTE NO. XXX-XXXXX DATED XX/XX/XX INSTALLED BY GEMS

INSTALLED BY GEMS						
ITEM NO.		- QUANTITY ORDERED				
	V	ITEM DESCRIPTION (* = EXISTING/REINSTALL)	WEIGH	НT	HEAT OL	JTPUT
(1) (2) (3) (4) (5)	1 1 1 1 1	INJECTOR CONTROL AND ELECTRONICS INJECTOR HEAD ON OVERHEAD COUNTERPOISED SUSPENSION. UPS SYSTEM POWER DISTRIBUTION UNIT CT OPTIMA CT660 GANTRY	22 79 350 815 3990		3399 3412	btu
6 7 8 9	1 1 1 1	GT1700 PATIENT TABLE WITH EXTENDED TABLE TOP (W/500 (6 PATIENT) FREEDOM WORKSPACE SMALL TABLE CONSOLE CABINET & LCD MONITORS OPERATOR'S CHAIR	1543 97 216	lbs		

ANCILLARY ITEMS CUSTOMER/CONTRACTOR SUPPLIED AND INSTALLED ITEMS ITEM ITEM DESCRIPTION NO. (* INDICATES EXISTING) X-RAY ON WARNING LIGHT - AVAILABLE FROM GE SUPPLY CALL: 800-200-9760 GE CAT. No. WXIABWW-OF-XIU 60 W×IABWW-DF-XIU 61 MINIMUM DOOR OPENING FOR EQUIPMENT DELIVERY IS 44 IN. W x 83 IN. H [11118mm x 2108mm], CONTINGENT On A 96 IN. [2438mm] CORRIDOR WIDTH THE FOLLOWING ITEMS ARE AVAILABLE FROM THE GE MEDICAL SYSTEMS SERVICE DEPARTMENT. CONTACT YOUR LOCAL GE MEDICAL SYSTEMS SERVICE REPRESENTATIVE FOR PRICING AND AVAILABILITY OR CALL 1-800-558-2040. X-RAY ROOM WARNING LIGHT CONTROL PANEL Reference junction point 'wlc' on sheet 'e1' for detailed description -e4502rl for warning 90 LIGHT CONTROL ONLY 91 MAIN DISCONNECT CONTROL GEMS CAT. NO. E4502AB 90 lbs., SEE DETAIL R4502AD. (IF A UPS IS NOT OR WILL NOT BE ORDERED, THE E4502AD CAN BE USED.) THE CUSTOMER MUST PROVIDE ONE INTERNET ACCESSIBLE (VPN) NETWORK CONNECTION UNLESS BASED UPON SYSTEM CONFIGURATION THAT A DEDICATED DATA TELEPHONE LINE IS ACCEPTABLE

POWER SPECIFICATIONS

Optima CT660 Series

(REV. DATE 29.MAY.12)

VOLTAGE

PRIMARY SOURCE IS REQUIRED FOR ALL INSTALLATIONS. RANGE OF LINE VOLTAGES: NOMINAL LINE VOLTAGE OF 380 TO 480, 3 PHASE, 50 OR 60 Hz.

REQUIRED POWER SUPPLY: WYE CONNECTED

MAXIMUM DAILY VOLTAGE VARIATION MUST FALL WITHIN ONE OF THE RANGES IN TABLE A.

TABLE A
ALLOWABLE
INPUT
VOLTAGES/
CURRENT
DEMAND

NOMINAL	ABSOLUTE	CURRENT	Γ (AMPS)	MINIMUM STANDARD
VOLTAGE	RANGE	MOMENTARY	CONTINUOUS	OVERCURRENT PROTECTION
380	342-418	152	30	110-A
400	360-440	144	29	110-A
420	378-462	137	27	100-A
440	396-484	131	26	100-A
460	414-506	126	25	90-A
480	432-528	120	24	90-A

(ALL CALCULATIONS BASED UPON NOMINAL VOLTAGE)

PHASE-BALANCE.

PHASE—TO—PHASE VOLTAGES MUST BE WITHIN +2 PERCENT OF THE LOWEST PHASE—TO—PHASE VOLTAGE. MAXIMUM ALLOWABLE TRANSIENT VOLTAGE SHOULD BE LIMITED TO 1500V PEAK.

VOLTAGE TRANSIENT OR IMPULSE ON THE INCOMING POWER MUST BE HELD TO A MINIMUM. TRANSIENTS CAUSED BY LIGHTNING, SURGES, LOAD SWITCHING, STATIC ELECTRICITY ETC. CAN CAUSE SCAN ABORTS OR, IN EXTREME INSTANCES, COMPONENT FAILURE IN THE COMPUTER SUBSYSTEM.

POWER DEMAND CONTINUOUS POWER DEMAND = 20 KVA (MAX DEMAND = 100 KVA)

TABLE B MAXIMUM MOMENTARY POWER DEMAND.

DEMAND	СТ
kVa *	100
POWER FACTOR AT	0.85

* DEMAND INCLUDES POWER FOR ENTIRE CT SYSTEM. LINE VOLTAGE REGULATION AT MAXIMUM POWER DEMAND MUST BE LESS THAN OR EQUAL TO 6 PERCENT.

DISTRIBUTION TRANSFORMER FOR A SINGLE UNIT INSTALLATION, THE MINIMUM TRANSFORMER SIZE IS 125 KVA, WITH 2.4% RATED REGULATION AT UNITY POWER FACTOR. RESULTANT MAXIMUM ALLOWABLE FEEDER REGULATION IS 3.6%

NOTE: THE CT SYSTEM MUST NOT BE POWERED IN A MULTIPLE INSTALLATION WHERE FILM CHANGERS ARE USED. FILM CHANGERS UTILIZE A LARGE NUMBER OF HIGH POWERED CLOSELY SPACED EXPOSURES WHICH MAY COINCIDE WITH THE CT SCAN.

GE EQUIPMENT LISTING

EQUIPMENT QUOTED FROM GE MEDICAL SYSTEMS PER QUOTE NO. XXX-XXXXXX DATED XX/XX/XX INSTALLED BY GFMS

		INSTALLED BY GEMS	·	,		
ITEM		– QUANTITY ORDERED				
NO.	V	ITEM DESCRIPTION (* = EXISTING/REINSTALL)	WEIGH	ΙT	HEAT OU	TPUT
(1) (2)	1	SYSTEM CABINET GRID HOLDER (FIELD VERIFY		lbs	2440	btu
3	1	IDEAL LOCATION) CABLE DRAPE RAIL.	180	lbs		
4	1	XT RADIOGRAPHIC SUSPENSION WITH INBOARD MOUNTING.	784	lbs	102	btu
(5)	2	LONGITUDINAL STATIONARY RAIL FOR XT SUSPENSION	68	lbs		
6	1	TETHER INTERFACE BOX	15	lbs	10	btu
(7)	1	DONGLE	4	lbs		
(7) (8)	1	XR 656 DIGITAL ELEVATING TABLE	992	lbs	372	btu
9	1	LONGITUDINAL DRIVE BELT 1 in. wide	44	lbs		
10	2	ANCHOR RAILS				
11	1	OPERATORS CONSOLE	79	lbs	604	btu
(12)	1	DIGITAL CHEST UNIT	595	lbs	136	btu
		1				

POWER SPECIFICATIONS

XR656 JEDI 80kw SYSTEMS CABINET REV. DATE: 11/22/10

VOLTAGE

PRIMARY SOURCE IS REQUIRED FOR ALL INSTALLATIONS.
RANGE OF LINE VOLTAGES:
NOMINAL LINE VOLTAGE OF 380 TO 480, 3 PHASE, WITHOUT NEUTRAL,

50 OR 60 Hz.

REQUIRED POWER SUPPLY: WYE DISTRIBUTION

MAXIMUM DAILY VOLTAGE VARIATION MUST FALL WITHIN ONE OF THE RANGES IN TABLE A.

TABLE A ALLOWABLE INPUT VOLTAGES/ CURRENT DEMAND

NOMINAL	NORMAI RANGF	CURRENT	(AMPS)	MINIMUM
VOLTAGE	±10 PERCENT	MAX. MOMENTARY	CONTINUOUS	OVERCURRENT PROTECTION
380	342-418	190	7	95-A
400	360-440	180	6.7	90-A
415	373-456	170	6.2	85-A
440	396-484	163	6	82-A
460	414-506	156	5.7	78-A
480	432-528	150	5.5	75-A

ALL CALCULATIONS BASED UPON NOMINAL VOLTAGE

NOTE

LOW LINE CONDITIONS MAY INHIBIT SOME HIGH kV_{P} TECHNIQUES. THE GENERATOR AUTOMATICALLY ESTABLISHES THESE INHIBITS BASED ON ACTUAL LINE CONDITIONS AND SYSTEM REGULATION.

PHASE-BALANCE. PHASE—TO—PHASE VOLTAGES MUST BE WITHIN +2 PERCENT OF THE LOWEST PHASE—TO—PHASE VOLTAGE. MAXIMUM ALLOWABLE TRANSIENT VOLTAGE EXCURSIONS ARE 2.5 PERCENT OF RATED LINE VOLTAGE AT A MAXIMUM DURATION OF 5 CYCLES AND FREQUENCY OF 10 TIMES PER HOUR.

POWER DEMAND CONTINUOUS POWER DEMAND = 4.6 KVA. (MAX DEMAND = 125 KVA)

TABLE B **MAXIMUM** MOMENTARY POWFR DEMAND.

DEMAND	XR656 JEDI 80 KW
kVa * POWER FACTOR AT	125 0.73
mA	630
kVp	80

DEMAND INCLUDES POWER FOR ENTIRE SYSTEM. LINE VOLTAGE REGULATION AT MAXIMUM POWER DEMAND MUST BE LESS THAN OR EQUAL TO 6 PERCENT.

DISTRI-BUTION TRANS-FORMER FOR A SINGLE UNIT INSTALLATION, THE MINIMUM TRANSFORMER SIZE IS 150 KVA.

APPENDIX C

HEATING, VENTILATION and AIR CONDITIONING (HVAC)

Table 7-1 CL	IMATIC CONDITIONS														
		North Latitude	Elevation	Col 0.4		Col. 1b 99.6%	Col 1	. 2a %	Col. 2b 99%	Co Wet	l. 3 Bulb		Annual Extreme Daily-Mean Db		
	Weather Station	Latii	leva					Tem	peratures	3					
Location		£		Sum	mer	Winter	Sum	mer	Winter	0.4%	1%	Maximum	Minimum		
		Š	MSL	Db	Wb	Db	Db	Wb	Db	0.4 /6	1 /0	Waxiiiuiii	William		
Oklahoma City	Oklahoma City Will Rogers World AP	35.39	1306	99.5	74.1	11.4	96.8	74.1	17.4	77.7	76.7	102.7	6.1		
						OREGON									
Portland	Portland Intl AP	45.59	108	91.2	67.5	23.9	87.1	66.5	28.6	69.4	67.8	99.0	20.5		
Roseburg*	Roseburg AP	43	505	93	69	18	90	67	18	-	-	-	-		
White City	Medford Rogue Valley Intl AP	42.39	1329	98.6	67.2	22.9	95.3	65.9	25.7	69.0	67.5	104.2	18.1		
					PEN	INSYLVANIA	4								
Altoona	Altoona Blair Co AP	40.30	1470	88.5	72.0	4.7	85.7	70.7	9.6	74.7	73.2	92.5	-2.6		
Butler*	Butler Co (AWOS)	40.78	1247	88.0	72.4	3.1	84.4	70.6	8.9	74.6	73.0	91.1	-2.3		
Coatesville*	New Castle	41	825	91	75	2	88	74	2	-	-	-	-		
Erie	Erie Intl AP	42.08	738	86.4	72.9	5.2	84.0	71.6	9.7	75.3	73.8	91.5	-0.5		
Lebanon	Harrisburg Capital City AP	40.22	348	92.4	73.8	8.7	89.6	72.5	13.3	76.5	75.2	96.3	1.6		
Philadelphia	Philadelphia Intl AP	39.87	30	93.2	75.4	12.6	90.6	74.5	16.9	78.3	77.0	97.0	6.6		
Pittsburgh	Pittsburgh Intl AP	40.50	1204	89.5	72.5	3.7	86.6	71.1	9.4	75.2	73.7	92.4	-3.0		
Wilkes-Barre	Wilkes-Barre Scranton Intl AP	41.34	961	88.9	72.1	3.5	86.0	70.6	8.3	75.0	73.3	93.0	-2.7		
					PU	ERTO RICO									
San Juan	San Juan Intl AP	18.42	62	91.4	77.4	69.1	89.6	77.8	70.2	80.6	79.9	93.9	66.8		

IMAGING SERIES - AIR H	ANDLING UNIT
AHU System Data	Sheet
Air Handling Type	Variable Air Volume
Indoor Design Temperature	Room Data Sheets
Indoor Design Relative Humidity	Room Data Sheets
Minimum Total Air Changes Per Hour	Room Data Sheets
Minimum Outdoor Air Changes Per Hour	Room Data Sheets
Return Air Permitted	Room Data Sheets
Exhaust Air Required	Room Data Sheets
Air Economizer Cycle Required	Yes
Heat Recovery System Required	ASHRAE Standard 90.1 - 2007
Filtration - Pre-Filters (PF-1 and PF-2)	PF-1 = MERV 7 and PF-2 = MERV 11
Filtration - After-Filter (AF)	AF = MERV 14
Cooling Source	Chilled Water
Heating Source	Steam and/or Hot Water
Humidification Source	Plant Steam or "Clean Steam"
General Exhaust System Required	Yes
Special Exhaust System Required	Yes
	MRI Unit
Emergency Power Required	Emergency Exhaust Fan
	Associated Controls
Individual Room Temperature Control Required	Room Data Sheets
Room Air Balance	Room Data Sheets

Note 1 - MRI (Magnetic Resonance Imaging) Unit

(a) Reference Document

MRI Design Guide published by the VA Office of Construction and Facilities Management: This Publication contains valuable information about the space layout, equipment list, exhaust system and utility requirements. A design guide plate for each room shows tentative room dimensions and equipment layout.

(b) Coordination

Capacity and configuration of the MRI Unit varies by manufacturer. Coordination with the project specific MRI vendor is mandatory. Coordinate vibration isolation requirement of AHU(s) sited in proximity to the MRI scanner.

(c) RF Shielding

For HVAC ducts and pipes penetrating RF shielding of the MRI Scanning Room, coordinate penetration requirements with MRI system manufacturer, RF shield vendor, and architectural discipline.

IMAGING SERIES - AIR HANDLING UNIT

AHU System Data Sheet

Note 2 - Radiology Service

(a) Reference Document

Radiology Service Design Guide published by the VA Office of Construction and Facility Management: This publication contains valuable information about the space layout, equipment list, and utilities requirements. A design guide plate for each room shows tentative room dimensions and the equipment layout.

(b) Shielded Walls and Ceilings

For HVAC ducts and pipes penetrating shielded walls and ceilings, ensure coordination with the architectural discipline and provide treatment as specified by the equipment manufacturer and medical physicist.

Note 3 - Nuclear Medicine

(a) Reference Document

Nuclear Medicine Design Guide published by the VA Office of Construction and Facilities Management: This publication contains valuable information about the space layout, equipment list, and utilities requirements. A design guide plate for each room shows tentative room dimensions and the equipment layout.

(b) Exhaust Systems

Provide a special exhaust system(s) for fume hoods and biological safety cabinets. Coordinate hood locations and sizes with the architectural discipline. For radioisotope hoods, coordinate the need for HEPA filters or Carbon Filters or both or no filters with the VA Safety Officer.

(c) Shielded Walls and Ceilings

For HVAC ducts and pipes penetrating shielded walls and ceilings, ensure coordination with the architectural discipline and provide treatment as specified by the equipment manufacturer and medical physicist.

NOTE 4 - Radiation Therapy Service

(a) Reference Document

Radiation Therapy Service Design Guide published by the VA Office of Construction and Facilities Management: This publication contains valuable information about the space layout, equipment list, and utilities requirements. A design guide plate for each room shows tentative room dimensions and the equipment layout.

(b) Shielded Walls and Ceilings

For HVAC ducts and pipes penetrating shielded walls and ceilings, ensure coordination with the architectural discipline and provide treatment as specified by the equipment manufacturer and medical physicist.

NOTE 5 - Indoor Design Conditions

Indoor design conditions may vary from Room Data Sheets to meet the requirements of the selected equipment.

NOTE 6 - Design Documents

The Room Data Sheets indicate generic requirements of various equipment in the Imagining Series. If the details of the selected equipment are not known when design documents are issued, provide a design based on information in the Room Data Sheets and based on an agreed vendor. The purpose is to provide a reasonable level of documentation for construction pricing and bidding.

F C F C MAX MIN EXHAUST (S)	IM	1AGIN	IG SEF	RIES (I	RADIC	LOGY S	ERVICES) - ROC)M DA	TA SHEET				
COOLING	ROOM NAME	INDOOR TEMPERATURE				RELATIVE					NOISE	AIR		
CT Area - Control Room 75 24 70 21 60 20 12 2 Return 35 (+) Yes CV				+				ACH	ACH			BALANCE	TEMP	FLOW
Note - None Note -														
CT Area - Scanning Room 75 24 70 21 60 20 12 2 Return 35 (+) Yes CV	CT Area - Control Room	75	24	70	21	<mark>60</mark>	20	12	2	Return	35	(+)	Yes	CV
Note - None IR Area - Special Procedure (SP) Control 75 24 70 21 60 20 15 2 Return 35 (+) Yes CV	Note - None													
Note - None IR Area - Special Procedure (SP) Control 75 24 70 21 60 20 15 2 Return 35 (+) Yes CV														
IR Area - Special Procedure (SP) Control Room		<mark>75</mark>	24	70	21	<mark>60</mark>	20	12	2	Return	<mark>35</mark>	(+)	Yes	CV
Room	Note - None													
IR Area - SP Room		75	24	70	21	60	20	15	2	Return	35	(+)	Yes	CV
Note - None IR Area - SP System Component Room 70 21 70 21 60 20 15 2 Return 35 (+) Yes CV	Note - None							II.			I		I.	-4
Note - None IR Area - SP System Component Room 70 21 70 21 60 20 15 2 Return 35 (+) Yes CV														
IR Area - SP System Component Room 70 21 70 21 60 20 15 2 Return 35 (+) Yes CV	IR Area - SP Room	75	24	70	21	60	20	15	2	Return	35	(+)	Yes	CV
Note - None Patient Area - Chest Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - General Purpose Radiology Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV	Note - None													
Note - None Patient Area - Chest Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - General Purpose Radiology Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV									,				1	
Patient Area - Chest Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV	IR Area - SP System Component Room	70	21	70	21	60	20	15	2	Return	35	(+)	Yes	CV
Patient Area - General Purpose Radiology 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Room Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV	Note - None													
Patient Area - General Purpose Radiology 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Room Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV	Patient Area Chart Poem	75	24	70	21	60	20	6	2	Poturn	25	(+)	Vos	CV
Patient Area - General Purpose Radiology Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV		/3	24	70	21	00	20	U		Retuin	33	(+)	163	CV
Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV Note - None Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV	Note None													
Patient Area - Mammography Room 75 24 70 21 60 20 6 2 Return 35 (+) Yes CV		75	24	70	21	60	20	6	2	Return	35	(+)	Yes	CV
	Note - None	1					•	1			1	,	1	-
	Patient Area - Mammography Poom	75	24	70	21	60	20	6	2	Paturn	25	(4)	Voc	CV
	Note - None	13	24	//	21	00	20	U		netuiii	33	(+)	162	CV

IMAGING SERIES (RADIOLOGY SERVICES) - ROOM DATA SHEET														
	INDOOR TEMPERATURE					OOR ATIVE	MIN	MIN	ROOM AIR	MAX NOISE	ROOM	INDIVI ROOM C		
ROOM NAME					HUM	HUMIDITY		OA	RETURN	LEVEL	AIR	KOOW C	SIVINOL	
	COO	LING	HEA.	TING	% RH	% RH	ACH	ACH	EXHAUST (G)	NC	BALANCE	TEMP	FLOW	
	F	С	F	С	MAX	MIN			EXHAUST (S)	IVC		I LIVIP	FLOW	
Patient Area - Radiographic/Fluoroscopic	75	24	70	21	60	20	6	2	Exhaust (G)	35	(-)	Yes	CV	
Room	/3	24	70	21	00	20	0		Extraust (G)	33	(-)	163	CV	
Note 1 - Air Balance														
Maintain negative room air balance in adjoinii	ng toile	t.												
Patient Area - Ultrasound Room	75	24	70	21	60	20	6	2	Return	35	(+)	Yes	CV	
Note 1 - Air Balance														
Maintain negative room air balance in adjoini	ng toile	t.												
Radiology Waiting Room	75	24	70	21	60	20	12	2	Exhaust (G)	40	(-)	Yes	CV	
Note 1 - Air Distribution					•		•					•		
Design air distribution system to move air tow	ards th	ie waiti	ng pati	ents.										

LEBANON VA -CT/RADIOLOGY RM FOR EMERGENCY DEPARTMENT

Prepared by Miller-Remick LLC; Cherry Hill, NJ for LEBANON VA Miller-Remick Project No. 0499-0019 2/13/2013

ZONE/ROOM TABULATION AND UTILITY SUMMARY

		Sys	tem		Dimensions				HV	AC Loads					Heat'g			Ve	ntilation Air				Min Supp	y Air	E	xhaust Air	
Zone No.	Description	AHU	Floor	Area	Ceiling	Volume		Cooling			Heating				w/ Infilt.	No. of People	OA/sq.ft	OA/person	Air Changes	User		Total	Air Changes	Total	Air Changes	User (cfm)) Total
		#	#	sq.ft	ft	cu.ft	Btu/h -sen	Btu/h - lat	SHR	Btu/h -sen	Btu/h - lat	SHR	Perim?		Btu/h -sen	No. of Feople	cfm	cfm	ac/h	cfm	vent eff	cfm	ac/h	cfm	ac/h	other cfm	cfm
1	CT	3	1	450	9.0	4,050	34,912	1000	0.97	1304		1.00	X	1,304	1,814	4	0.06	5	2.00		90%	150	12	825			0
2	X-RAY	3	1	365	9.0	3,285	7,957	1000	0.89	1058		1.00	X	1,058	1,472	4	0.06	5	2.00		90%	125	6	350			0
3	X-RAY CONTROL RM	3	1	120	9.0	1,080	2,616	500	0.84	348		1.00	X	348	484	2	0.06	5	2.00		90%	40	6	125			0
4	CT CONTROL RM	3	1	135	9.0	1,215	5,886	500	0.92	391		1.00	X	391	544	2	0.06	5	2.00		90%	45	12	250			0
5	EXISTING WAITING	2	1																							300	-300
6	EXISTING ICU CORRIDOR	1	1																								
Sum of Peal	ks			1,070		9,630	51,371	3,000	0.94	3,101	0	1.00		3,101	4,314	12	12	Act. Occ. (min	. 50% of calc'd occ. fo	or vent air)		360				0	0

LEBANON VA -CT/RADIOLOGY RM FOR EMERGENCY DEPARTMENT

Prepared by Miller-Remick LLC; Cherry Hill, NJ for LEBANON VA Miller-Remick Project No. 0499-0019 2/13/2013

ZONE/ROOM TABULATION AND UTILITY SUMMARY

Zone No.	Description
	CIT
1	CT
2	X-RAY
3	X-RAY CONTROL RM
4	CT CONTROL RM
5	EXISTING WAITING
6	EXISTING ICU CORRIDOR
Sum of Pea	ks

						Air Syster	n Caculatio	ons								
		SA V	Volume Req'd				ASH	RAE 62		Air	Balance		Reheat Coil			
Max (calc)	Min (calc)	User (max)	User (min)	Turndn	Che	ecks	Z-i	factor	SA	EA	TA	RA	Capacity	Req'd	Balance	
cfm	cfm	cfm	cfm	Turridii	ac/h	cfm/sq.ft	at Max	at Min	cfm	cfm	cfm	cfm	Btu/h	gpm	gpm	
1,650	1,650	1,650	1,650	1.00	24	3.67	0.09	0.09	1,650	0	-300	-1,350	98,010	9.8	10.0	
400	400	400	400	1.00	7	1.10	0.31	0.31	400	0	-300	-100	23,760	2.4	2.5	
125	125			1.00	7	1.04	0.32	0.32	125	0		-125	7,425	0.7	1.0	
275	275		275	1.00	14	2.04	0.16	0.16	275	0		-275	16,335	1.6	2.0	
									0	-300	600	-300				
									0	0	300	-300				
2,450	2,450			1.00	15	2.29	0.15	0.15	2,450	-300	300	-2,450	145,530	14.6	15.5	
							0.13	0.13		Min OA	@ Max SA:	445	cfm			
							0.16	0.16		Min O	A @Min SA:	445	cfm			

UTILITY SUMMARY							
CHW	HW	LPS	CLPS				
gpm	gpm	lb/h	lb/h				
18	16	219	17				

PROJECT INFORMATION

Location
Building owner
Program user
Company
Comments

By Dataset name		ck przybylski\Documents\TRACE 700 BANON - CTRAD.TRC
Calculation time TRACE® 700 version	05:17 PM or 6.2.9	n 02/10/2013
Location Latitude Longitude Time Zone Elevation Barometric pressure	Harrisburg, 40.0 76.0 5 335 29.5	Pennsylvania deg deg ft in. Hg
Air density Air specific heat Density-specific heat product Latent heat factor Enthalpy factor	0.0751 0.2444 1.1011 4,846.9 4.5046	lb/cu ft Btu/lb⋅°F Btu/h⋅cfm⋅°F Btu⋅min/h⋅cu ft lb⋅min/hr⋅cu ft
Summer design dry bulb Summer design wet bulb Winter design dry bulb Summer clearness number Winter clearness number Summer ground reflectance Winter ground reflectance Carbon Dioxide Level	92 77 0 1.00 1.00 0.20 0.20 400	°F °F °F
Design simulation period Cooling load methodology Heating load methodology	January - D RTS (ASHR UATD	ecember

Room Checksums

By Miller-Remick

Room - 001 - CT

СО	OLING (COIL PEAK			CLG SPAC	E PEAK	, L	HEATING CO	OIL PEAK	
Peaked at Outsi	Time: de Air:	Mo/F OADB/WB/H	Hr: 7 / 14 R: 92 / 77 /	115	Mo/Hr: OADB:			Mo/Hr: H OADB: 0	eating Design	
Se		Plenum Sens. + Lat	Total	Percent Of Total	Sensible .			Space Peak Space Sens	Coil Peak Tot Sens	Of Total
Envelope Leads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Envelope Loads Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	969	969	2	ŏ	0	Roof Cond	0	-1,304	5.26
Glass Solar	Ö	0	0	0	o o	0	Glass Solar	Ö	0	0.00
Glass/Door Cond	Ö	Ö	Ö	Ö	o o	Ö	Glass/Door Cond	Ö	Ö	0.00
Wall Cond	Ō	Ō	Ō	Ö	0	0	Wall Cond	Ö	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	396		396	1	129	0	Infiltration	-520	-520	2.10
Sub Total ==>	396	969	1,365	3	129	0	Sub Total ==>	-520	-1,824	7.36
Internal Loads							Internal Loads			
Lights	3,072	0	3,072	7	3,072	10	Lights	0	0	0.00
People	2,000	0	2,000	4	1,000	3	People	0	0	0.00
Misc	26,537	0	26,537	57	26,537	84	Misc	0	0	0.00
Sub Total ==>	31,609	0	31,609	68	30,609	96	Sub Total ==>	0	0	0.00
Ceiling Load	969	-969	0	0	1,000	3	Ceiling Load	-1,304	0	0.00
Ventilation Load	0	0	7,918	17	0	0	Ventilation Load	0	-10,405	41.99
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	0		0	0	0	0	Exhaust Heat		0	0.00
Exhaust Heat		-294	-294	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat			2,986	6			RA Preheat Diff.		-12,549	50.64
Ret. Fan Heat		3,000	3,000	6			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Hear		0	0.00
Underfir Sup Ht Pku	•		0	0			Underflr Sup Ht Pku	р	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	32,974	2,706	46,584	100.00	31,738	100.00	Grand Total ==>	-1,824	-24,778	100.00

TEMPERATURES							
Cooling Heating							
SADB	55.0	72.1					
Ra Plenum	81.8	60.9					
Return	76.9	70.0					
Ret/OA	78.3	58.3					
Fn MtrTD	0.2	0.0					
Fn BldTD	0.4	0.0					
Fn Frict	1.3	0.0					

AIRFLOWS								
	Cooling	Heating						
Diffuser	1,441	810						
Terminal Main Fan	1,441 1,441	810 810						
Sec Fan	0	0						
Nom Vent	135	135						
AHU Vent	135	135						
Infil	7	7						
MinStop/Rh	810	810						
Return	1,448	817						
Exhaust	142	142						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

Cooling Heating % OA 9.4 16.7 cfm/ft² 3.20 1.80	ENGINEERING CKS							
% OA 9.4 16.7 cfm/ft ² 3.20 1.80								
0.110	Α							
-1	/ft²	1.80						
cfm/ton 371.26	/ton	j						
ft²/ton 115.92	on	<u>, </u>						
Btu/hr-ft ² 103.52 -55.06	/hr-ft²	-55.06						
No. People 4	People							

COOLING COIL SELECTION									
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter D	B/WB/HR F gr/lb	Leave °F		WB/HR gr/lb
Main Clg Aux Clg	3.9 0.0	46.6 0.0	39.9 0.0	1,440 0	78.3 63. 0.0 0.		53.1 0.0	51.8 0.0	56.1 0.0
Opt Vent	0.0	0.0	0.0	0	0.0 0.	0.0	0.0	0.0	0.0
Total	3.9	46.6							

Gros	AREAS s Total	Glass	s (%)	
Floor Part	450 0		,	ſ
Int Door ExFIr	0 0			F
Roof Wall	450 0	0 0	0 0	ŀ
Ext Door	0	0	0	;

HEAT	TING COIL S CapacityCoil MBh		ION Ent °F	Lvg °F
Main Htg	-16.9	810	53.1	72.1
Aux Htg	0.0	0	0.0	0.0
Preheat	-7.9	135	0.0	53.1
Reheat	-15.1	810	53.1	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-24.8	·	2.0	3.0

Project Name:

Dataset Name: LEBANON - CTRAD.TRC

Room Checksums

By Miller-Remick

Room - 002 - X-Ray

COC	DLING (COIL PEAK			CLG SPAC	PEAK	, L	HEATING CO	OIL PEAK	
Peaked at 7 Outside		Mo/Hr OADB/WB/HR	: 7 / 15 : 92 / 76 /	114	Mo/Hr: OADB:			Mo/Hr: He OADB: 0	eating Design	
Sen		Plenum Sens. + Lat	Total	Percent Of Total	Sensible			Space Peak Space Sens	Coil Peak I Tot Sens (Of Total
Envelope Loads	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)	Envelope Loads	Btu/h	Btu/h	(%)
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	ő	0	Skylite Cond	0	0	0.00
Roof Cond	0	811	811	5	ŏ	0	Roof Cond	0	-1,058	7.56
Glass Solar	Õ	0	0	0	ő	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	Ö	Ö	0	Glass/Door Cond	0	Ö	0.00
Wall Cond	Ō	Ō	Ö	Ö	Ō	0	Wall Cond	Ō	Ö	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	320		320	2	105	1	Infiltration	-422	-422	3.02
Sub Total ==>	320	811	1,131	7	105	1	Sub Total ==>	-422	-1,480	10.58
Internal Loads							Internal Loads			
Lights	1,993	0	1,993	12	1,993	28	Lights	0	0	0.00
People	2,000	0	2,000	13	1,000	14	People	0	0	0.00
Misc	3,060	0	3,060	19	3,060	42	Misc	0	0	0.00
Sub Total ==>	7,053	0	7,053	44	6,053	84	Sub Total ==>	0	0	0.00
Ceiling Load	811	-811	0	0	811	11	Ceiling Load	-1,058	0	0.00
Ventilation Load	0	0	6,396	40	0	0	Ventilation Load	0	-8,440	60.32
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	265		265	2	265	4			0	0.00
Exhaust Heat		-238	-238	-1			OA Preheat Diff.		0	0.00
Sup. Fan Heat			681	4			RA Preheat Diff.		-4,071	29.10
Ret. Fan Heat		693	693	4			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Hear		-	0.00
Underfir Sup Ht Pkup	,	0	0	0			Underfir Sup Ht Pku	h	0	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	8,449	454	15,980	100.00	7,234	100.00	Grand Total ==>	-1,480	-13,991	100.00

TEMPERATURES							
Cooling Heating							
SADB	55.0	74.1					
Ra Plenum	82.0	60.9					
Return	76.9	70.0					
Ret/OA	82.1	46.7					
Fn MtrTD	0.2	0.0					
Fn BldTD	0.4	0.0					
Fn Frict	1.3	0.0					

AIRFLOWS								
Cooling Heating								
Diffuser	329	329						
Terminal Main Fan	329 329	329 329						
Sec Fan	0	0						
Nom Vent	110	110						
AHU Vent	110	110						
Infil	5	5						
MinStop/Rh	329	329						
Return	334	334						
Exhaust	115	115						
Rm Exh	0	0						
Auxiliary	0	0						
Leakage Dwn	0	0						
Leakage Ups	0	0						

ENGINEERING CKS						
Cooling Heating						
% OA	33.3	33.3				
cfm/ft ²	0.90	0.90				
cfm/ton	246.68					
ft ² /ton	274.09					
Btu/hr-ft ²	43.78	-38.33				
No. People	4					

	COOLING COIL SELECTION									
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav er		NB/HR gr/lb
Main Clg Aux Clg	1.3 0.0	16.0 0.0	10.5 0.0	329 0	82.1 0.0	67.0 0.0	76.3 0.0	53.1 0.0		52.3 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	1.3	16.0								

	AREAS	S			
Gross Total Glass					
		ft²	(%)		
Floor	365			r	
Part	0			1	
Int Door	0			F	
ExFlr	0			F	
Roof	365	0	0	H	
Wall	0	0	0	(
Ext Door	0	0	0	7	

HEAT	TING COIL SE CapacityCoil MBh		ION Ent °F	Lvg °F
Main Htg	-7.6	329	53.1	74.1
Aux Htg	0.0	0	0.0	0.0
Preheat	-6.4	110	0.0	53.1
Reheat	-6.1	329	53.1	70.0
Humidif	0.0	0	0.0	0.0
Opt Vent	0.0	0	0.0	0.0
Total	-14.0			

Project Name:

Dataset Name: LEBANON - CTRAD.TRC

Room Checksums

By Miller-Remick

Room - 003 - Control Room - X-Ray

СО	OLING (COIL PEAK			CLG SPAC	E PEAK		HEATING CO	OIL PEAK	
Peaked at Outside		Mo/H OADB/WB/HI	lr: 7 / 15 R: 92 / 76 /	114	Mo/Hr: OADB:			Mo/Hr: He OADB: 0	eating Design	
Sei	Space ns. + Lat.	Plenum Sens. + Lat		Percent Of Total	Space Sensible	Percent Of Total		Space Peak Space Sens	Coil Peak Tot Sens	
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)
Envelope Loads				• •		• •	Envelope Loads			` '
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	267	267	5	0	0	Roof Cond	0	-348	7.56
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0	•	0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	105		105	2	34	1	Infiltration	-139	-139	3.02
Sub Total ==>	105	267	372	7	34	1	Sub Total ==>	-139	-486	10.58
Internal Loads							Internal Loads			
Lights	614	0	614	11	614	26	Lights	0	0	0.00
People	1.000	0	1,000	18	500	21	People	0	0	0.00
Misc	809	0	809	15	809	34	Misc	0	0	0.00
Sub Total ==>	2,423	0	2,423	45	1,923	81	Sub Total ==>	0	0	0.00
Ceiling Load	267	-267	0	0	267	11	Ceiling Load	-348	0	0.00
Ventilation Load	0	0	2,103	39	0	0	Ventilation Load	0	-2,775	60.32
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	154		154	3	154	6	Exhaust Heat		0	0.00
Exhaust Heat	, ,	-78	-78	-1		_	OA Preheat Diff.		0	0.00
Sup. Fan Heat			224	4			RA Preheat Diff.		-1,339	29.10
Ret. Fan Heat		228	228	4			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Heat		0	0.00
Underfir Sup Ht Pku	р		0	0			Underfir Sup Ht Pkup)	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	2,949	149	5,425	100.00	2,378	100.00	Grand Total ==>	-486	-4,600	100.00

TEMPERATURES						
Cooling Heating						
SADB	55.0	74.1				
Ra Plenum	82.0	60.9				
Return	76.9	70.0				
Ret/OA	82.1	46.7				
Fn MtrTD	0.2	0.0				
Fn BldTD	0.4	0.0				
Fn Frict	1.3	0.0				

AIRFLOWS						
	Cooling	Heating				
Diffuser	108	108				
Terminal Main Fan	108 108	108 108				
Sec Fan	0	0				
Nom Vent	36	36				
AHU Vent	36	36				
Infil	2	2				
MinStop/Rh	108	108				
Return	110	110				
Exhaust	38	38				
Rm Exh	0	0				
Auxiliary	0	0				
Leakage Dwn	0	0				
Leakage Ups	0	0				

ENGINEERING CKS							
Cooling Heating							
% OA	33.3	33.3					
cfm/ft ²	0.90	0.90					
cfm/ton	238.89						
ft²/ton	265.44						
Btu/hr-ft ²	45.21	-38.33					
No. People	2						

	COOLING COIL SELECTION									
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm		r DB/ °F	WB/HR gr/lb	Leav °F		WB/HR gr/lb
Main Clg Aux Clg	0.5 0.0	5.4 0.0	3.4 0.0	108 0	82.1 0.0	67.0 0.0	76.3 0.0	53.1 0.0		50.1 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	0.5	5.4								

AREAS						
Gros	Glas	-				
	ft²	(%)				
Floor	120					
Part	0					
Int Door	0					
ExFlr	0					
Roof	120	0	0			
Wall	0	0	0			
Ext Door	0	0	0			

HEATING COIL SELECTION							
	CapacityCoil .	Airflow	Ent	Lvg			
	MBh	cfm	°F	°F			
Main Htg	-2.5	108	53.1	74.1			
Aux Htg	0.0	0	0.0	0.0			
Preheat	-2.1	36	0.0	53.1			
Reheat	-2.0	108	53.1	70.0			
Humidif	0.0	0	0.0	0.0			
Opt Vent	0.0	0		0.0			
Total	-4.6						

Project Name:

Dataset Name: LEBANON - CTRAD.TRC

Room Checksums

By Miller-Remick

Room - 004 - Control Room - CT

cod	DLING (COIL PEAK			CLG SPAC	E PEAK		HEATING C	OIL PEAK	
Peaked at 1			lr: 7/14	445	Mo/Hr:				eating Design	
Outside	e Air:	OADB/WB/HF	R: 92/77/	115	OADB:	92		OADB: 0)	
Sen	Space s. + Lat.	Plenum Sens. + Lat		Percent Of Total	Space Sensible	Percent Of Total		Space Peak Space Sens	Coil Peak Tot Sens	
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)
Envelope Loads				. ,			Envelope Loads			
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00
Roof Cond	0	291	291	3	0	0	Roof Cond	0	-391	5.26
Glass Solar	0	0	0	0	0	0	Glass Solar	0	0	0.00
Glass/Door Cond	0	0	0	0	0	0	Glass/Door Cond	0	0	0.00
Wall Cond	0	0	0	0	0	0	Wall Cond	0	0	0.00
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00
Floor	0		0	0	0	0	Floor	0	0	0.00
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0.00
Infiltration	119		119	1	39	1	Infiltration	-156	-156	2.10
Sub Total ==>	119	291	410	4	39	1	Sub Total ==>	-156	-547	7.36
Internal Loads							Internal Loads			
Lights	691	0	691	7	691	13	Lights	0	0	0.00
People	1,000	0	1,000	11	500	9	People	0	0	0.00
Misc	3,751	0	3,751	41	3,751	70	Misc	0	0	0.00
Sub Total ==>	5,443	0	5,443	59	4,943	92	Sub Total ==>	0	0	0.00
Ceiling Load	291	-291	0	0	300	6	Ceiling Load	-391	0	0.00
Ventilation Load	0	0	2,375	26	0	0	Ventilation Load	0	-3,122	41.99
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	0	0	0.00
Ov/Undr Sizing	80		80	1	70	1	Exhaust Heat		0	0.00
Exhaust Heat	00	-88	-88	-i			OA Preheat Diff.		0	0.00
Sup. Fan Heat			504	5			RA Preheat Diff.		-3,765	50.64
Ret. Fan Heat		508	508	6			Additional Reheat		0	0.00
Duct Heat Pkup		0	0	0			System Plenum Heat		0	0.00
Underfir Sup Ht Pkup)		0	0			Underfir Sup Ht Pku	o	0	0.00
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00
Grand Total ==>	5,932	420	9,232	100.00	5,351	100.00	Grand Total ==>	-547	-7,433	100.00

TEMPERATURES					
	Cooling	Heating			
SADB	55.0	72.1			
Ra Plenum	81.8	60.9			
Return	76.9	70.0			
Ret/OA	79.4	58.3			
Fn MtrTD	0.2	0.0			
Fn BldTD	0.4	0.0			
Fn Frict	1.3	0.0			

AIRFLOWS						
	Cooling	Heating				
Diffuser	243	243				
Terminal Main Fan	243 243	243 243				
Sec Fan	0	0				
Nom Vent	41	41				
AHU Vent	41	41				
Infil	2	2				
MinStop/Rh	243	243				
Return	245	245				
Exhaust	43	43				
Rm Exh	0	0				
Auxiliary	0	0				
Leakage Dwn	0	0				
Leakage Ups	0	0				

ENGINEERING CKS					
Cooling Heating					
% OA	16.7	16.7			
cfm/ft ²	1.80	1.80			
cfm/ton	315.86				
ft ² /ton	175.48				
Btu/hr-ft ²	68.38	-55.06			
No. People	2				

COOLING COIL SELECTION										
	Total C ton	apacity MBh	Sens Cap. MBh	Coil Airflow cfm	Enter °F	DB/WB °F g	/HR r/lb	Leav °F		WB/HR gr/lb
Main Clg Aux Clg	0.8 0.0	9.2 0.0	7.0 0.0	243 0	79.4 64 0.0		7.0 0.0		51.3 0.0	54.0 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
Total	8.0	9.2								

	AREA	S		
Gro	ss Total	Glass		
		ft²	(%)	
Floor	135			Mai
Part	0			Aux
Int Door	0			Pre
ExFlr	0			Reh
Roof	135	0	0	Hur
Wall	0	0	0	Opt
Ext Door	0	0	0	Tota

`	MBh	Airflow cfm	Ent °F	Lvg °F
Main Htg	-5.1	0	53.1	72.1
Aux Htg	0.0		0.0	0.0
Preheat	-2.4	41	0.0	53.1
Reheat	-4.5	243	53.1	70.0
Humidif Opt Vent <i>Total</i>	0.0 0.0 -7.4	0	0.0	0.0

Project Name:

Dataset Name: LEBANON - CTRAD.TRC

Job Name User Name Address Miller Remick VA Lebanon Bldg 101 and Bldg 22 (T92)Andrew Bees

Philadelphia Main Office

Performance Climate Changer

Quantity 1

Job Comments

AHU 101-3

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Actual airflow Unit elevation Unit size Integral base frame UL listed unit Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2 MOP circuit 2	2700 cfm 0.00 ft 8 6in. integral base frame UL listed unit Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Installed weight Rigging weight Single or front discharge - 63 Hz Single or front discharge - 125 Hz Single or front discharge - 250 Hz Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz Single or front discharge - 4K Hz	5091.5 lb 5034.2 lb 75 dB 83 dB 82 dB 88 dB 81 dB 86 dB
Unit elevation Unit size Integral base frame UL listed unit Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	0.00 ft 8 6in. integral base frame UL listed unit Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Rigging weight Single or front discharge - 63 Hz Single or front discharge - 125 Hz Single or front discharge - 250 Hz Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz	5034.2 lb 75 dB 83 dB 82 dB 88 dB 81 dB
Unit size Integral base frame UL listed unit Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	8 6in. integral base frame UL listed unit Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Single or front discharge - 63 Hz Single or front discharge - 125 Hz Single or front discharge - 250 Hz Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz	75 dB 83 dB 82 dB 88 dB 81 dB
Integral base frame UL listed unit Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	6in. integral base frame UL listed unit Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Single or front discharge - 125 Hz Single or front discharge - 250 Hz Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz	83 dB 82 dB 88 dB 81 dB
UL listed unit Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	UL listed unit Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Single or front discharge - 250 Hz Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz	82 dB 88 dB 81 dB
Circuit number 1 FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	Supply fan motor(s) 11.00 A 13.75 A 24.75 A 20.00 A	Single or front discharge - 500 Hz Single or front discharge - 1K Hz Single or front discharge - 2K Hz	88 dB 81 dB
FLA (CV) circuit 1 MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	11.00 A 13.75 A 24.75 A 20.00 A	Single or front discharge - 1K Hz Single or front discharge - 2K Hz	81 dB
MCA circuit 1 MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	13.75 A 24.75 A 20.00 A	Single or front discharge - 2K Hz	
MOP circuit 1 Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	24.75 A 20.00 A		86 dB
Fuse size circuit 1 Circuit number 2 FLA (CV) circuit 2 MCA circuit 2	20.00 A	Single or front discharge - 4K Hz	
Circuit number 2 FLA (CV) circuit 2 MCA circuit 2			76 dB
FLA (CV) circuit 2 MCA circuit 2	D	Single or front discharge - 8K Hz	74 dB
MCA circuit 2	Return/booster fan motor(s)	Inlet and casing - 63 Hz	94 dB
	4.80 A	Inlet and casing - 125 Hz	95 dB
MOP circuit 2	6.00 A	Inlet and casing - 250 Hz	89 dB
WOT CITCUIT 2	10.80 A	Inlet and casing - 500 Hz	92 dB
Fuse size circuit 2	15.00 A	Inlet and casing - 1K Hz	83 dB
Circuit number 3	Lights + switch	Inlet and casing - 2K Hz	84 dB
FLA (CV) circuit 3	2.61 A	Inlet and casing - 4K Hz	88 dB
MCA circuit 3	3.26 A	Inlet and casing - 8K Hz	79 dB
MOP circuit 3	5.87 A	Ducted inlet - 63 Hz	81 dB
Fuse size circuit 3	15.00 A	Ducted inlet - 125 Hz	82 dB
Circuit number 4	Receptacle	Ducted inlet - 250 Hz	83 dB
FLA (CV) circuit 4	8.00 A	Ducted inlet - 500 Hz	86 dB
MCA circuit 4	10.00 A	Ducted inlet - 1K Hz	75 dB
MOP circuit 4	18.00 A	Ducted inlet - 2K Hz	76 dB
Fuse size circuit 4	15.00 A	Ducted inlet - 4K Hz	75 dB
Product group	Outdoor unit	Ducted inlet - 8K Hz	71 dB
Roof curb type	Pier or pad mounted unit	Casing - 63 Hz	82 dB
Modified coil - min face velocity	250 ft/min	<u>Casing - 125 Hz</u>	80 dB
Modified coil - max face velocity	600 ft/min	<u>Casing - 250 Hz</u>	79 dB
HEPA filter - min face velocity	0 ft/min	<u>Casing - 500 Hz</u>	83 dB
HEPA filter - max face velocity	600 ft/min	Casing - 1K Hz	78 dB
High voltage location	Right	Casing - 2K Hz	69 dB
<u>Length</u>	436.505 in	Casing - 4K Hz	61 dB
<u>Width</u>	50.500 in		

Controls and VFD/starter Module Position: 0

Factory controls package	No factory mount	Design Sequence	С
Automatic Selection	Validation Only	Number of transformers	1 - Transformer
Controller mounting	No mount	Prepackaged solution option used	MP common configuration not
			used
Controller type	No controller	Prepackaged solution valid unit	Non valid MP common
			configuration
LCD screen and keypad	No LCD	Total number of control points	2 control points

Warranty	Module Position:	0

Std. warranty only

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Air-handling performance data is certified in accordance with AHRI standard 430. Air handlers with plenum fans and vertical draw-thru air handlers where the coil is mounted immediately below the fan section are not covered under the scope of AHRI 430.

Warranty section

Air mixing section Module Position:

Section type	Air mixing section	Right side opening type	No opening
<u>Unit size</u>	8	Left side opening type	No opening
Mixing section type	reduced length	Design sequence	D
Access door location	Both	Opening 1 bottom - airflow	2700 cfm
Back opening type	No opening	Opening 1 back - airflow	2700 cfm
Back inlet type	Unducted	Opening 1 front - airflow	2700 cfm
Front opening type	Full face opening	Opening 1 bottom - face velocity	1346 ft/min
Front air path	Leaving	Opening 1 bottom - pressure drop	0.884 in H2O
Top opening type	No opening	Opening 1 bottom total pressure drop	0.884 in H2O
Bottom opening type	High velocity parallel damper	Greatest entry PD	0.884 in H2O
Bottom air path	Entering	Opening 1 front - area	10.09 sq ft
Bottom air path type	Return	Opening 1 bottom - area	2.01 sq ft
Bottom inlet type	Ducted		

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Fan section Module Position: 2

			Module Position:
Fan sec [7]-1			
Section type	Fan	Static pressure origin	Program calculated
Fan application	Return fan	Single or front discharge - 63 Hz	65 dB
<u>Unit size</u>	8	Single or front discharge - 125 Hz	68 dB
Inlet location	Back inlet	Single or front discharge - 250 Hz	78 dB
Fan orientation	Plenum fan	Single or front discharge - 500 Hz	74 dB
Fan discharge	Front top	Single or front discharge - 1K Hz	70 dB
Access door location	Both	Single or front discharge - 2K Hz	78 dB
Drive location	Right side drive	Single or front discharge - 4K Hz	64 dB
<u>Design sequence</u>	G	Single or front discharge - 8K Hz	56 dB
Motor horsepower per fan	3 hp	Inlet and casing - 63 Hz	92 dB
NEMA nominal motor efficiency	89.50 %	Inlet and casing - 125 Hz	87 dB
Motor class	NEMA premium compliant	Inlet and casing - 250 Hz	89 dB
	ODP		
Motor voltage	460/3	Inlet and casing - 500 Hz	90 dB
<u>Cycle</u>	60 cycles/sec	Inlet and casing - 1K Hz	83 dB
<u>Drive service factor</u>	Direct drive	Inlet and casing - 2K Hz	83 dB
Motor RPM	1800	Inlet and casing - 4K Hz	88 dB
Marine light	Marine LED light	Inlet and casing - 8K Hz	79 dB
<u>Fan airflow</u>	2700 cfm	<u>Ducted inlet - 63 Hz</u>	81 dB
Overall ESP	2.000 in H2O	<u>Ducted inlet - 125 Hz</u>	79 dB
Unit entering ESP	1.000 in H2O	Ducted inlet - 250 Hz	83 dB
Unit discharge ESP	1.000 in H2O	Ducted inlet - 500 Hz	85 dB
<u>Elevation</u>	0.00 ft	<u>Ducted inlet - 1K Hz</u>	75 dB
Minimum temperature	40.00 F	Ducted inlet - 2K Hz	76 dB
<u>Design temperature</u>	70.00 F	Ducted inlet - 4K Hz	75 dB
Fan size and type	16.5in. direct-drive plenum, full	Ducted inlet - 8K Hz	71 dB
	width		
Total brake horsepower	2.148 hp	Casing - 63 Hz	77 dB
Total brake horsepower at min temp	2.277 hp	Casing - 125 Hz	70 dB
Total static pressure	3.449 in H2O	<u>Casing - 250 Hz</u>	77 dB
Speed	2103 rpm	Casing - 500 Hz	76 dB
Fan module pressure drop	2.011 in H2O	Casing - 1K Hz	75 dB
Section height	41.250 in	Casing - 2K Hz	66 dB
Section length	44.000 in	Casing - 4K Hz	59 dB
Section width	50.500 in	<u>Casing - 8K Hz</u>	55 dB
Section weight	676.1 lb		

Economizer section Module Position: 3

Economizer section type	Return fan economizer	Exhaust air damper type	Parallel blade damper
Outside air location	Left	Exhaust air hood type	Exhaust hood w/ bird screen
Outside air damper type	Parallel blade damper	Supply fan total air PD	0.224 in H2O
Outside air hood type	OA - hood w/eliminators	Exhaust fan total air PD	0.553 in H2O
Return air damper type	Parallel blade damper		

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Filter section 4 Module Position: Section type Filter Filter area 8.00 sq ft 338 ft/min Unit size 8 Filter face velocity 0.676 in H2O Filter type Short Bag/Cartridge filter Filter pressure drop Filter frame Bag/cartridge filter frame Prefilter pressure drop 0.587 in H2O Access door location Filter section pressure drop 1.264 in H2O Primary filter type 1 Section length 26.500 in 12in. cartridge - 65% eff -MERV 11 Prefilter filter type Section width 50.500 in 2" Coated pleated media -MERV 7 Design sequence Section height 41.250 in Filter airflow 2700 cfm Section weight 268.3 lb Filter condition Mid-life

Controls section		Module	Position: 5
Section type	Starter/VFD only	Ret/Exh fan high voltage door	Right
<u>Unit size</u>	Unit size 8	Design sequence	В
Starter/VFD	Return/exhaust section	Section length	24.500 in
NEMA application type	Internal NEMA	Section width	50.500 in
Access door location	Left	Section height	41.250 in
Access door swing direction	Outward swing	Section weight	271.9 lb

Coil section			Module Position:	6
Coil se [4]-1				
Section type	Horizontal coil	Entering dry bulb		0.00 F
<u>Unit size</u>	8	Leaving dry bulb		70.95 F
Section size	IFB - medium large (1-3 rows)	Total capacity		207.86 MBh
Coil application	Heating coil	Coil fluid percentage		0.00 %
Changeover coil	No	Steam pressure		15.00 psig
System type	Steam IFB	Coil face velocity		523 ft/min
Coil supply/cabinet side	Right	Air pressure drop		0.261 in H2O
Coil height	Integral face & bypass	J trap dimension		2.593 in
IFB - coil size	B-30 horiz IFB coil	H trap dimension		5.185 in
IFB - coil rows	2 rows	Coil condensate		219.00 lb/hr
IFB - fins per inch	10 fins per inch	Coil installed weight		288.4 lb
<u>Drain pan</u>	No drain pan	Coil section pressure drop		0.261 in H2O
<u>Design sequence</u>	D	Section length		26.500 in
Apply AHRI ranges	Yes	Section height		41.250 in
Coil performance airflow	2700 cfm	Section width		50.500 in
Coil elevation	0.00 ft	Section weight		488.1 lb

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Access section Module Position: 7

Section type	Access/blank/turning	Design sequence	В
<u>Unit size</u>	8	Marine light	Marine LED light
Section size	Extended medium	Section length	19.000 in
Access door location	Both	Section width	50.500 in
Door swing direction	Outward swing	Section height	41.250 in
Front opening	Full Face	Section weight	140.3 lb
Back opening	Full Face		

Coil section Module Position:

		Module Position:
Horizontal coil	Coil fluid percentage	100.00 %
8	Target valve pressure drop	4.00 psig
Extended medium	Coil type	w
Cooling coil	<u>Rows</u>	6 rows
No	<u>Fin type</u>	Prima flo H (Hi efficient)
Chilled water	<u>Fin material</u>	Aluminum fins
Right	Tube diameter	5/8in. tube diameter (15.875
		mm)
Galvanized	Tube matl/wall thickness	.020" (0.508mm) copper tubes
Unit coil height	<u>Turbulators</u>	Yes
Stainless steel	Corrosion resistant coating	None
Right	Coil face velocity	369 ft/min
D	Air pressure drop	0.336 in H2O
Yes	J trap dimension	2.761 in
2700 cfm	H trap dimension	5.521 in
0.00 ft	Leaving fluid temperature	54.00 F
78.00 F	Fluid pressure drop	1.47 ft H2O
63.00 F	Fluid volume	6.85 gal
52.00 F	Fluid velocity	1.10 ft/s
51.36 F	Coil face area	7.31 sq ft
77.06 MBh	Coil rigging weight	170.4 lb
89.83 MBh	Coil installed weight	227.7 lb
99 Per Foot	Coil section pressure drop	0.336 in H2O
44.00 F	Section length	19.000 in
10.00 F	Section height	41.250 in
17.90 gpm	Section width	50.500 in
0.00000 hr-sq ft-deg F/Btu	Section weight	391.0 lb
Water		
	Extended medium Cooling coil No Chilled water Right Galvanized Unit coil height Stainless steel Right D Yes 2700 cfm 0.00 ft 78.00 F 63.00 F 52.00 F 51.36 F 77.06 MBh 89.83 MBh 99 Per Foot 44.00 F 10.00 F 17.90 gpm 0.00000 hr-sq ft-deg F/Btu	Extended medium Cooling coil No Chilled water Right Colins at a steel Unit coil height Stainless steel Right D Yes 2700 cfm 0.00 ft 178.00 F 63.00 F 63.00 F 63.00 F 63.00 F 52.00 F 63.00 F 52.00 F 63.00 F 63.00 F 63.00 F 63.00 F 63.00 F 63.00 F Coil face welocity Leaving fluid temperature Fluid pressure drop Fluid volume Fluid volume Fluid volume Fluid volocity Coil face area Coil face area Coil face area Coil face or coil

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Access section 9 Module Position: Section type Access/blank/turning Design sequence В Marine LED light Unit size Marine light Section size Medium Section length 14.000 in Access door location Both Section width 50.500 in Door swing direction Outward swing Section height 41.250 in Front opening Full Face Section weight 105.3 lb Full Face Back opening

Humidification section		М	lodule Position:	10
Humidif [8]-1				
Section type	Humidifier	<u>EDB</u>		55.00 F
Steam source	Atmospheric	Entering RH		47.00 %
Control type	Electronic control	Leaving RH		59.00 %
High limit sensor	High limit sensor	Steam rate		16.13 lb/hr
Control valve trap	Cast iron trap	Humidifier section PD		0.004 in H2O
Actual airflow	2700 cfm			

Access section			Module Position:	11
Section type	Access/blank/turning	Design sequence		В
Unit size	8	Marine light		Marine LED light
Section size	Large	Section length		36.000 in
Access door location	Both	Section width		50.500 in
Door swing direction	Outward swing	Section height		41.250 in
Front opening	Full Face	Section weight		270.0 lb
Back opening	Full Face			

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Fan section Module Position: 12

ran secuon			Module Position:
Fan sec [7]-1			
Section type	Fan	Static pressure origin	Program calculated
Fan application	Supply fan	Single or front discharge - 63 Hz	75 dB
<u>Unit size</u>	8	Single or front discharge - 125 Hz	83 dB
Inlet location	Back inlet	Single or front discharge - 250 Hz	81 dB
Fan orientation	Plenum fan	Single or front discharge - 500 Hz	88 dB
Fan discharge	Front top	Single or front discharge - 1K Hz	81 dB
Access door location	Both	Single or front discharge - 2K Hz	86 dB
<u>Drive location</u>	Right side drive	Single or front discharge - 4K Hz	76 dB
Design sequence	G	Single or front discharge - 8K Hz	74 dB
Motor horsepower per fan	7.5 hp	Inlet and casing - 63 Hz	90 dB
NEMA nominal motor efficiency	91.00 %	Inlet and casing - 125 Hz	95 dB
Motor class	NEMA premium compliant	Inlet and casing - 250 Hz	83 dB
	ODP		
Motor voltage	460/3	Inlet and casing - 500 Hz	88 dB
<u>Cycle</u>	60 cycles/sec	Inlet and casing - 1K Hz	74 dB
<u>Drive service factor</u>	Direct drive	Inlet and casing - 2K Hz	79 dB
Motor RPM	1800	Inlet and casing - 4K Hz	78 dB
Marine light	Marine LED light	<u>Inlet and casing - 8K Hz</u>	70 dB
Fan airflow	2700 cfm	<u>Ducted inlet - 63 Hz</u>	74 dB
Overall ESP	3.000 in H2O	<u>Ducted inlet - 125 Hz</u>	80 dB
Unit entering ESP	1.500 in H2O	<u>Ducted inlet - 250 Hz</u>	76 dB
Unit discharge ESP	1.500 in H2O	<u>Ducted inlet - 500 Hz</u>	82 dB
Elevation	0.00 ft	<u>Ducted inlet - 1K Hz</u>	62 dB
Minimum temperature	40.00 F	<u>Ducted inlet - 2K Hz</u>	70 dB
Design temperature	70.00 F	<u>Ducted inlet - 4K Hz</u>	60 dB
Fan size and type	16.5in. direct-drive plenum,	<u>Ducted inlet - 8K Hz</u>	53 dB
	80% width		
Total brake horsepower	3.676 hp	Casing - 63 Hz	81 dB
Total brake horsepower at min temp	3.896 hp	<u>Casing - 125 Hz</u>	80 dB
Total static pressure	5.838 in H2O	<u>Casing - 250 Hz</u>	76 dB
Speed	2717 rpm	Casing - 500 Hz	83 dB
Fan module pressure drop	3.011 in H2O	Casing - 1K Hz	75 dB
Section height	41.250 in	Casing - 2K Hz	66 dB
Section length	44.000 in	Casing - 4K Hz	58 dB
Section width	50.500 in	<u>Casing - 8K Hz</u>	57 dB
Section weight	725.1 lb		

Access section Module Position: 13

Section type	Access/blank/turning	Design sequence	В
<u>Unit size</u>	8	Section length	10.000 in
Section size	Small	Section width	50.500 in
Front opening	Full Face	Section height	41.250 in
Back opening	Full Face	Section weight	83.8 lb

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Controls section 14 Module Position: Section type Starter/VFD only Supply fan high voltage door Right Unit size 8 Unit size Design sequence В Starter/VFD Supply section Section length 24.500 in NEMA application type Internal NEMA Section width 50.500 in Access door location Section height 41.250 in Access door swing direction Outward swing Section weight 276.9 lb

Filter section			Module Position:	15
Section type	Filter	Filter condition		Mid-life
<u>Unit size</u>	8	Filter area		8.00 sq ft
Filter type	Short Bag/Cartridge filter	Filter face velocity		338 ft/min
Filter frame	Bag/cartridge filter frame	Filter pressure drop		0.706 in H2O
Access door location	Both	Filter section pressure drop		0.706 in H2O
Primary filter type 1	12in. cartridge - 95% eff -	Section length		26.500 in
	MERV 15			
Prefilter filter type	No prefilter	Section width		50.500 in
Design sequence	С	Section height		41.250 in
Filter airflow	2700 cfm	Section weight		264.7 lb

		Module Position:	16
Discharge plenum	Front total pressure drop		0.000 in H2O
8	Top total pressure drop		0.000 in H2O
Horizontal standard length	Discharge 1 bottom - area		2.67 sq ft
No	Discharge 1 bottom - pressure drop		0.032 in H2O
В	Bottom total pressure drop		0.032 in H2O
2700 cfm	Right total pressure drop		0.000 in H2O
0.000 in H2O	<u>Left total pressure drop</u>		0.000 in H2O
	8 Horizontal standard length No B 2700 cfm	8 Top total pressure drop Horizontal standard length No Discharge 1 bottom - area Discharge 1 bottom - pressure drop Bottom total pressure drop Right total pressure drop	Discharge plenum 8

Coil performance data is certified in accordance with AHRI standard 410. Propylene glycol and calcium chloride, or mixtures thereof, are not covered under the scope of AHRI 410.

Overall Unit Acoustics

Discharge Inlet + Casing Casing Ducted Inlet

63Hz	125 1-1 2	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
<i>7</i> 5	83	82	88	81	86	7 6	74	
94	95	89	92	83	84	88	7 9	
82	80	7 9	83	7 8	69	61	59	
81	82	83	86	<i>7</i> 5	7 6	<i>7</i> 5	71	

AHU 101-3 - Return Fan sec [7]-1 Size 8 DDP 16 inch AFClass 2 100% Width 9 blades; 100% Width - Single Fan

AHU 101-3 - Return Fan sec [7]-1 Size 8DDP 16inch AF Class 2 100% Width 9 blades; 100% Width

Discharge Inlet + Casing
Casing Ducted Inlet

 63Hz	125 1 z	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
65	68	78	74	70	78	64	56	
92	87	89	90	83	83	88	7 9	
77	70	77	76	<i>7</i> 5	66	59	55	
81	7 9	83	85	<i>7</i> 5	76	<i>7</i> 5	71	

AHU 101-3 - Supply Fan sec [7]-1 Size 8DDP 16inch AFClass 2 80% Width 9 blades; 100% Width

_	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
Discharge	<i>7</i> 5	83	81	88	81	86	7 6	74	
Inlet + Casing	90	95	83	88	74	79	7 8	70	
Casing	81	80	76	83	<i>7</i> 5	66	58	57	
Ducted Inlet "	74	80	76	82	62	7 0	60	53	
_									

- Plenum fan 16.5in. direct-drive plenum, 80% width Supply fan 7.5 hp 460/3
- Light switch and/or receptacle LH
- Cooling coil 6 rows Coil type W
- Heating coil Coil type
- Hood left
- Return air damper left
- Hood right
- Plenum fan 16.5in. direct-drive plenum, full width Return fan 3 hp 460/3
- 1" N.P.T.E
- 10 Opening bottom 16.000 x 24.000
- Cartridge filters 12in. cartridge - 95% eff - MERV
- Marine light (5)
- Cartridge filters 12in. cartridge - 65% eff - MERV
- Damper bottom-parallel blade 8.750 x 35.500

Doors

22 width x 31 height 20 width x 31 height 19 width x 31 height 10 width x 31 height 15 width x 31 height 17 width x 31 height

For maneuvering purposes, include 1.125 inches to each ship split length for overlapping panel flange. Flange will not add to overall installed unit length shown.

OPENING AND DIMENSIONS MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE VARIANCES / NOT TO SCALE Unit size: 8 Unit Casing: 2in Double Wall Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22 Product group: Outdoor unit Proposal Number: Actual airflow: 2700 cfm Integral base frame: 6in. integral base frame Tags: AHU 101-3 Sales Office: Philadelphia Main Office Rigging/Installed Weight: 5034.2 lb/ 5091.5 lb Paint: Factory painted - slate gray

Detailed Elevation View: Left - Measurements in inches

OPENING AND DIMENSIONS MAY	VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWI	NGS CONSTITUTES ACCEPTANCE OF TH	IESE VARIANCES / NOT TO SCALE
Unit size: 8	Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22	Unit Casing: 2in Double Wall	
II		Proposal Number:	
Integral base frame: 6in. integral base frame	Actual airflow: 2700 cfm	Tags: AHU 101-3	Performance Climate Changer™
Paint: Factory painted - slate gray		Rigging/Installed Weight: 5034.2 lb/ 5091.5 lb	Air Handlers
		•	<u>-</u>

Coil connection view: Right - Measurements in inches

NPTI: National Pipe Thread Internal Connection NPTE: National Pipe Thread External Connection

OPENING AND DIMENSIONS	MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROV	ED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE	VARIANCES / NOT TO SCALE
Unit size: 8	Job Name: Miller Remick VA Lebanon Bldg 101 and Bldg 22	Unit Casing: 2in Double Wall	
Product group: Outdoor unit	Actual airflow: 2700 cfm	Proposal Number:	
Integral base frame: 6in. Integral base frame		Tags: AHU 101-3	Performance C
Paint: Factory painted - slate gray	Sales Office: Philadelphia Main Office	Rigging/Installed Weight: 5034.2 lb/ 5091.5 lb	Air Handlers

Coil connection view: Left - Measurements in inches

NPTI: National Pipe Thread Internal Connection NPTE: National Pipe Thread External Connection

OPENING AND DIMENSIONS MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE VARIANCES / NOT TO SCALE

Unit size: 8

Product group: Outdoor unit
Integral base frame: 6in. integral base frame
Paint: Factory painted - slate gray

OPENING AND DIMENSIONS MAY VARY FROM CONTRACT DOCUMENTS / RETURN OF APPROVED DRAWINGS CONSTITUTES ACCEPTANCE OF THESE VARIANCES / NOT TO SCALE

Unit Casing: 2in Double Wall
Proposal Number:
Tags: AHU 101-3
Rigging/Installed Weight: 5034.2 lb/ 5091.5 lb

Air Handlers

Submittal

AESV

DESV

Single Duct Terminal Unit

Analog Control, Pressure Independent Digital

Inlet Size	CFM Range	D	F	G	Н	L	М	W
4	0-225	3 ⁷ / ₈	2 ¹ / ₈	7 ³ / ₈	8	15 ¹ / ₂	5 ³ / ₈	12
5	0-350	4 7/8	$2^{1}/_{8}$	7 ³ / ₈	8	15 ¹ / ₂	5 ³ / ₈	12
6	0-500	5 ⁷ / ₈	$2^{1}/_{8}$	7 ³ / ₈	8	15 ¹ / ₂	3 ³ / ₈	12
7	0-650	6 ⁷ / ₈	1 ¹ / ₈	7 ³ / ₈	10	15 ¹ / ₂	3 ³ / ₈	12
8	0-900	7 7/8	1 ¹ / ₈	7 ³ / ₈	10	15 ¹ / ₂	3 ³ / ₈	12
9	0-1050	8 ⁷ / ₈	-	5 ³ / ₈	12 ¹ / ₂	15 ¹ / ₂	3 ³ / ₈	14
10	0-1400	9 7/8	-	5 ³ / ₈	12 ¹ / ₂	15 ¹ / ₂	3 ³ / ₈	14
12	0-2000	11 ⁷ / ₈	-	5 ³ / ₈	15	15 ¹ / ₂	3 ³ / ₈	16
14	0-3000	13 ⁷ / ₈	-	3 ³ / ₈	17 ¹ / ₂	15 ¹ / ₂	3 ³ / ₈	20
16	0-4000	15 ⁷ / ₈	-	3 ³ / ₈	18	15 ¹ / ₂	3 ³ / ₈	24
24 x 16	0-8000	23 ⁷ / ₈ x 15 ⁷ / ₈	1 ¹ / ₈	5 ³ / ₈	18	15	3 ³ / ₈	38

Accessories	(Optiona	al)
-------------	----------	-----

1000	ooonoo (Optioni	41)			
Checl	k 🗹 if provided.		SteriLoc Liner	1" EcoShield Liner	Hanger Brackets
	24 V Control Transformer		UltraLoc Liner	½" EcoShield Liner (Foil Face)	Removable Air Flow Sensor
	Dust Tight Enclosure Seal		1" Fiberglass Liner	1" EcoShield Liner (Foil Face)	Bottom Access Door
	Fibre Free Liner		½" EcoShield Liner	Disconnect Switch	

General Description

- Heavy gauge steel housing. Mechanically sealed and gasketed, leak resistant construction. Less than 2% of nominal cfm at 1.5" sp wg.
- Dual density internal insulation, treated to resist air erosion. Meets requirements of NFPA 90A and UL 181.
- Rectangular discharge opening is designed for slip and drive cleat duct connection.

- Multipoint center averaging inlet velocity sensor.
- Electronic proportional room thermostat with adjustable setpoints for temperature and airflow is included with unit.
- Minimum and maximum airflow adjustments are made at the thermostat, using a digital voltmeter.
- Choice of right hand or left hand control location.

- Electric damper actuator is an integral part of the unit.
- Model AESV can be installed horizontally, vertically, or at any angle. Operation is not affected by position.
- The control enclosure is optional and needs be ordered separately except for units with electric reheat.

Accessories (Optional)

Inlet Size	Н	W	Water Coil						
illet Size	-	VV	L (1-2 Row)	L (3-4 Row)					
4	8	12	5	7 1/4					
5	8	12	5	7 1/4					
6	8	12	5	7 ¹ / ₄					
7	10	12	5	7 ¹ / ₄					
8	10	12	5	7 ¹ / ₄					
9	12 ¹ / ₂	14	5	7 1/4					
10	12 ¹ / ₂	14	5	7 1/4					
12	15	16	5	7 1/4					
14	17 ¹ / ₂	20	7 1/2	9 ³ / ₄					
16	18	24	7 1/2	9 ³ / ₄					
24 x 16	18	38	5	7 1/4					

The total length of the AESV unit is the summation of the unit length (with or without attenuator) and the length of the optional water coil.

Single/Dual Duct Terminals

RECOMMENDED PRIMARY AIR CFM RANGES / ALL TERMINALS

Control Types:

www.titus-hvac.com | www.titus-energysolutions.com

PESV • Pneumatic
AESV • Analog Electronic
DESV • Digital Electronic

QUICK SELECTION PROCEDURE

- Select unit inlet size based upon acoustic parameters and/ or maximum pressure drop requirements, using pages M13.
- 2. Check inlet size selection against cfm control limits based on control type shown on this page.
- 3. Select accessories (multi-outlets, attenuators) as required.
- Select reheat coil, if required. Make your selection using the actual heating flow rate, not cooling.

				cfm Rang	anges of Minimum and Maximum Settings											
Inlet Size	Total cfm	PESV - Pi	neumatic	PESV - Pi	neumatic	AESV - Analog Electronic DESV - Digital										
Tillet Size	Range	Titus II C	Controller	Titus I C	ontroller	Typical Controller										
		Minimum	Maximum	Minimum	Maximum	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM							
4	0-225	45*-170	80-225	55*-170	80-225	45*-225	45-225	45*-225	45-225							
5	0-350	65*-270	120-350	85*-270	120-350	65*-350	65-350	65*-350	65-350							
6	0-500	80*-330	150-500	105*-330	150-500	80*-500	80-500	80*-500	80-500							
7	0-650	105*-425	190-650	135*-425	190-650	105*-650	105-650	105*-650	105-650							
8	0-900	145*-590	265-900	190*-590	265-900	145*-900	145-900	145*-900	145-900							
9	0-1050	175*-700	315-1050	225*-700	315-1050	175*-1050	175-1050	175*-1050	175-1050							
10	0-1400	230*-925	415-1400	300*-925	415-1400	230*-1400	230-1400	230*-1400	230-1400							
12	0-2000	325*-1330	600-2000	425*-1330	600-2000	325*-2000	325-2000	325*-2000	325-2000							
14	0-3000	450*-1800	810-3000	575*-1800	810-3000	450*-3000	450-3000	450*-3000	450-3000							
16	0-4000	580*-2350	1100-4000	750*-2350	1100-4000	580*-4000	580-4000	580*-4000	580-4000							
24X16	0-8000	1400*-5200	2600-8000	1800*-5200	2600-8000	1400*-7500	1400-7500	1400*-7500	1400-7500							

*Factory cfm settings (except zero) will not be made below this range because control accuracy is reduced. On pressure dependent units, minimum cfm is always zero and there is no maximum.

Note: On controls mounted by Titus but supplied by others (FMA or Factory Mounting Authorization), these values are quidelines only. Controls mounted on an FMA basis are calibrated in the field.

Single/Dual Duct Terminals

PESV, AESV, DESV / RADIATED SOUND PERFORMANCE

		Min													Ban	d So	ounc	l Po	_											
Size	CFM	ΔPs				5″ Δ							<u>0″ ∆</u>						-	5″ ∆							0″ Δ	_		
			2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC
4	100 125 150 175 200	0.02 0.03 0.04 0.06 0.08	49 52 55 58 60	45 49 52 55 57	36 39 41 42 44	33 36 37 39 40	31 32 34 35 36	26 27 28 29 30	11 16 20 23 25	52 55 58 61 63	48 52 55 58 60	39 42 44 46 47	36 38 40 42 43	35 36 38 39 40	31 32 34 34 35	15 20 23 27 29	53 57 60 63 65	50 54 57 59 62	41 44 46 48 49	37 40 41 43 44	37 39 40 41 42	34 36 37 38 38	17 22 25 28 31	55 58 61 64 66	51 55 58 61 63	43 45 47 49 51	38 41 42 44 45	39 40 42 43 44	36 38 39 40 41	18 23 27 30 33
5	150 200 250 300 350	0.01 0.02 0.03 0.04 0.06	49 53 55 58 60	44 48 52 54 56	36 39 41 43 45	32 35 37 39 40	31 34 35 37 38	25 27 29 30 31	10 15 20 22 24	53 56 59 62 63	49 53 56 59 61	41 44 46 48 49	36 38 40 42 43	35 37 39 41 42	30 32 34 35 36	16 21 24 28 30	62 64	51 55 59 61 63	43 46 49 50 52		37 40 41 43 44	33 35 37 38 39	18 23 28 30 33	57 60 63 65 67	53 57 61 63 65	45 48 51 52 54	39 42 44 45 47	39 41 43 44 45	35 37 39 40 41	21 25 30 33 35
6	300 350 400 450 500	0.07 0.10 0.13 0.16 0.20	55 57 58 59 59	49 52 53 55 56	40 42 44 45 47	35 37 39 40 42	32 34 35 36 37	28 29 30 31 32	16 20 21 23 24	59 60 61 62 63	54 57 58 60 61	45 47 49 50 51	39 41 42 44 45	37 38 39 40 41	33 34 35 36 37	27	64	57 59 61 63 64	48 50 52 53 54	41 43 44 46 47	39 40 42 43 44	38 39	25 28 30 33 34	63 64 65 66 67	59 62 63 65 67	50 52 54 55 56	42 44 46 47 49		38 39 40 41 42	28 31 33 35 37
7	450 500 550 600 650	0.07 0.09 0.10 0.12 0.15	59 60 60 61 62		44	38 39 40 42 43	33 34 35 35 36	24 24 25 25 26	20 22 22 23 24	61 62 63 63 64	54 55 57 58 59	48 49 50 51 52	42 43 45 46 47	38 39 40 41 41	30 30 31 31 32	23 24 25 27 28	63 64 65	57 58 59 61 62	51 52 53 54 55	45 46 47 48 49	41 42 43 44 44	35	-	63 64 66 66		53 54 55 56 57	46 48 49 50 51	43 44 45 46 46	35 36 37 37 38	28 29 31 33 34
8	600 650 700 750 800	0.02 0.02 0.02 0.02 0.03	59 60 60 61 62	50 51 52 53 54	44 44 45 46 47	40 41 42 43 43	38 39 40 40 41	32 32 33 34 34	20 22 22 23 24	62 63 63 64 65	55 56 57 58 59	49 50 50 51 52	43 44 45 46 47		39 40 41 41 42	24 25 25 27 28	65	58 59 60 61 62	52 53 53 54 55		45 46 47 48 48	45	27 28 29 30 31	65 66 67 67 68	60 61 62 63 64	54 55 56 56 57	47 48 49 50 51		47 48 48 49 50	29 30 31 33 34
9	800 850 900 950 1000	0.04 0.04 0.05 0.06 0.06	58 58 59 59 60	47 48 49 50 50	44	36 37 37 37 38	34 34 35 35 36	30 31 31 31 31	19 19 20 20 22	61 62 62 63	53 54 55 56 56	49 49 50 50 50	42 43 43 43 44	40 41 41 42 42	35 35 35 36 36	23 24 24 25			52 53 53 54 54	46 46 47 47 47	44 45 45 45 46				59 60 61 62 62	55 55 56 56 57	48 49 49 49 50	48	40 40 40 40 40	29 30 31 31
10	900 1000 1100 1200 1300	0.01 0.01 0.01 0.01 0.01	60 60 61 62 63	50 51 52 53 54	48	45 46 47 47 48	42 43 44 45 45	29 30 32 32 33	22 22 23 24 25		57 58 58 59 60	53 54 54 54 55	50 51 52 53 53	48 49 50 51 52	37 38 39 40 41	27 28 28 28 29	65 66 67 67 68	60 61 62 63 63	57 57 57 58 58	53 54 55 56 56	52 53 54 55 55				63 64 64 65 66	59 59 60 60 61	56 56 57 58 58	54 55 56 57 58	44 45 46 47 48	34 35 35 36
12	1200 1400 1600 1800 2000	0.01 0.01 0.01 0.01 0.01	58 60 61 61 62	53	47 48 50 51 52	41 42 43 44 45	37 38 40 41 43	30 32 34 35 36	20 22 24 25 26	62 63 64 65 66	56 57 59 60 61	52 54 55 56 57	47 48 49 50 51	43 45 46 48 49	37 39 40 41 43	26 28 29 30 31	64 65 66 67 68	59 60 62 63 64		50 52 53 54 55	46 48 50 51 52	42 44 45			61 63 64 65 67	58 60 61 62 63	53 54 55 56 57	49 51 52 54 55	43 45 47 48 49	32 35 36 37 38
14	1500 1800 2100 2400 2700	0.02 0.03 0.04 0.05 0.06	56 58 59 60 62	56		46 47	40 41 42 43 44	36 36 37 38 38	22 23 24	60 62 63 64 66	56 58 59 60 61	50 51 52 53 54	48 49 50 51 52	45 46 47 48 49	41 42 43 43 44	24 27 28 29 30	62 64 66 67 68	64	57	51 52 53 54 55	48 49 50 51 52	46 47 47	33 34	70	61 63 64 65 66	55 56 58 58 59	53 54 55 56 57	53 54	47 48 49 49 50	30 33 34 35 36
16	2000 2400 2800 3200 3600	0.02 0.02 0.03 0.04 0.05	61 62	53 55 56	45 46 48 49	44 46 47	42 44 45	34 36 37	21 23 24	61 63 65 66	58 60 61	51 52 54	48 50 51	47 49 50	41 42 44	27 29 30	64 66 67 69	59 61 62 64	54 55 56	50 52 53	50 52 53	45 46 48	30 31 34	67 69 71	63 64 66	55 57 58	53 55	52 54 55	48 49 50	33 34 36
40	3900 4600 5300 6000 6700	0.03 0.04 0.06 0.07 0.09	73 75 77	68 71 73	68 71	62 64 66	59 61 63	55 56 57	41 43 47	75 78 80	71 73 75	68 71 73	64 66 68	63 65 66	60 61 62	43 47 49	77	72 74 76	70 72 74	66 68 70	65 67 68	63 64 65	46 48 50	78 80 82	73 75 77	71 73 75	69 71	67 68 70	64 66 67	47 49 51

- Radiated sound is the noise transmitted through the unit casing.
- Min ΔPs is the static pressure drop from the unit inlet to the unit outlet with primary damper full open.
- Sound power levels are in dB, ref 10⁻¹² watts.
- Sound performance based on units lined with standard dual density fiberglass lining.
- All performance based on tests conducted in accordance with ASHRAE 130-2008 and AHRI 880-2008.
- All NC levels determined using AHRI 885-2008 Appendix E. See Terminal Unit Engineering Guidelines.
- Dash (-) in space denotes NC value less than NC10.
- Only highlighted data points are AHRI certified. See page M24 for AHRI Certified Performance Listings.

Single/Dual Duct Terminals

PESV, AESV, DESV / DISCHARGE SOUND PERFORMANCE

Size CFM APs 2 3 4 5 6 7 NC 2 3 4 5 6 7			1 5" ADc	1 Λ" ΔDc			
100	2.0" ΔPs					CFM Min	Size
125							
150	59 55 51 53 49 2						
175	62 58 54 55 51 2						
200 0.08 68 64 55 50 46 38 24 69 67 60 55 53 46 27 70 69 62 58 56 51 29 71 70 70 70 70 70 70 70							4
150							
200 0.02 63 54 49 46 43 36 18 65 58 55 51 49 44 20 67 61 58 53 53 48 23 68 63 300 0.03 65 55 52 49 45 47 39 67 62 57 53 51 45 47 24 72 69 64 60 57 52 28 73 71 71 71 71 72 73 74 74 74 75 75 75 75 75	70 64 60 59 54 3	51 29 7	70 69 62 58 56 51		68 64 55 50 46 38 24	200 0.08	
5 250 0.03 65 57 52 49 45 38 20 67 62 57 53 51 45 23 69 64 60 56 55 50 25 70 66 30 0.04 66 59 54 51 47 39 18 69 64 59 55 33 64 72 24 72 69 64 60 57 52 28 73 71 66 63 50 0.06 68 61 56 52 48 40 20 70 66 61 57 54 47 24 72 69 64 60 57 52 28 73 71 70 66 61 57 54 50 48 49 21 70 70 70 70 70 70 70 70 70 70 70 70 70	59 57 52 53 49 2	46 19 6			60 50 46 43 41 34 14	150 0.01	
300 0.04 66 59 54 51 47 39 18 69 64 59 55 53 46 22 70 67 62 58 56 51 25 71 69 350 0.06 68 61 56 52 48 40 20 70 66 61 57 54 47 24 72 69 64 60 57 52 28 73 73 73 350 0.10 61 59 54 52 47 40 16 66 64 60 56 52 47 22 68 67 63 59 55 51 25 70 69 64 00 0.13 63 60 56 54 48 41 17 67 66 61 58 53 48 24 70 69 64 60 57 52 28 71 70 66 62 58 50 0.10 64 62 57 55 49 42 20 68 67 63 59 54 51 27 71 70 66 62 58 55 13 25 70 69 50 0.20 65 63 59 56 50 43 21 69 69 64 61 55 50 28 72 72 67 63 59 54 31 74 74 74 75 65 61 56 61 57 54 94 22 00 68 67 63 59 54 54 18 69 70 69 64 60 57 52 28 71 71 60 60 60 60 60 60 60 60 60 60 60 60 60						200 0.02	
350 0.06 68 61 56 52 48 40 20 70 66 61 57 54 47 24 72 69 64 60 57 52 28 73 71 73 73 73 74 74 74 74 74	66 62 58 57 53 2				65 57 52 49 45 38 20	250 0.03	5
300 0.07 60 57 53 50 45 39 14 64 62 58 54 51 46 20 67 65 61 57 54 50 23 69 67 65 60 0.10 61 59 54 52 47 40 16 66 64 60 56 52 47 22 68 67 63 59 55 51 25 70 69 64 400 0.13 63 60 56 54 48 41 17 67 66 61 58 53 48 24 70 69 64 60 57 52 28 71 71 50 60 0.16 64 62 57 55 49 42 20 68 67 63 59 54 49 25 71 70 66 62 58 53 29 73 73 50 0.20 65 63 59 56 50 43 21 69 69 64 61 55 50 28 72 72 67 63 59 54 49 17 74 74 74 74 74 74 74 74 74 74 74 74 74	69 65 60 59 54 2						
350 0.10 61 59 54 52 47 40 16 66 64 60 56 52 47 22 68 67 63 59 55 51 25 70 69 69 60 60 60 57 52 28 71 71 71 71 71 71 71 7						350 0.06	
6							
450	69 65 60 58 54 2	51 25 7	68 67 63 59 55 51	66 64 60 56 52 47 22	61 59 54 52 47 40 16	350 0.10	
500 0.20 65 63 59 56 50 43 21 69 69 64 61 55 50 28 72 72 67 63 59 54 31 74 74 74 74 74 74 74 7	71 66 62 59 55 3	52 28 7		67 66 61 58 53 48 24	63 60 56 54 48 41 17	400 0.13	6
450 0.07 64 58 53 51 47 40 15 67 63 58 54 51 46 21 68 67 60 56 54 49 25 70 69 50 0.09 64 59 54 52 48 40 16 67 65 59 56 52 47 23 69 68 62 58 55 50 27 70 71 70 550 0.1 65 61 55 54 49 41 18 68 66 60 57 53 48 24 69 70 63 59 56 51 29 71 72 650 0.15 65 63 57 56 55 49 42 168 69 62 59 55 49 28 70 71 63 60 57 52 30 71 73 650 0.15 65 63 57 56 50 43 21 68 69 62 59 55 49 28 70 72 64 61 58 53 31 72 74 65 65 0.02 67 61 56 53 48 41 19 70 67 60 56 53 47 25 71 70 62 57 55 51 29 72 73 64 65 0.02 67 62 56 54 49 41 20 70 68 60 56 53 48 27 72 71 63 58 56 52 30 73 74 75 750 0.02 68 63 57 54 49 42 20 70 69 61 57 54 48 27 72 71 63 58 56 52 30 73 74 75 750 0.02 68 63 57 55 50 42 17 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 800 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 800 0.04 68 60 56 53 49 43 18 70 65 60 57 54 49 21 71 67 62 59 57 54 25 73 70 990 0.05 68 61 57 54 50 44 19 72 66 61 57 55 50 24 74 70 64 60 58 54 27 74 71 61 60 61 58 54 28 73 70 900 0.01 70 61 58 56 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 28 75 72 1000 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 58 54 27 74 71 1000 0.01 70 61 58 56 50 44 19 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 64 61 58 54 28 75 72 1200 0.01 70 61 58 56 50 44 19 72 66 62 60 56 51 23 73 69 63 60 58 54 28 75 72 1200 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 58 54 28 75 72 1200 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 70 64 62 57 55 50 44 19 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 67 63 61 57 30 75 74 1400 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 25 17 74 70 65 63 60 56 28 77 77 77 77 77 77 77 77 77 77 77 77 77							
Soo Soo	74 69 65 61 57 3					500 0.20	
7							
600 0.12 65 62 56 55 49 42 20 68 67 61 58 54 48 25 70 71 63 60 57 52 30 71 73 66 650 0.15 65 63 57 56 50 43 21 68 69 62 59 55 49 28 70 72 64 61 58 53 31 72 74 65 650 0.02 66 60 55 52 48 40 18 69 66 59 55 52 47 24 71 69 61 56 55 51 28 72 72 65 650 0.02 67 61 56 53 48 41 19 70 67 60 56 53 47 25 71 70 62 57 55 51 29 72 73 75 0 0.02 67 62 56 54 49 41 20 70 68 60 56 53 48 27 72 71 63 58 56 52 30 73 75 800 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 72 63 58 56 52 30 73 75 800 0.04 68 60 56 53 49 43 18 70 65 60 57 54 48 27 72 73 64 59 57 53 31 74 75 800 0.05 68 61 57 54 50 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 990 0.05 68 61 57 54 50 43 18 71 66 61 57 55 50 23 73 68 63 59 57 54 25 74 70 1000 0.06 69 62 58 55 50 44 19 72 66 61 58 55 50 23 73 69 63 60 58 54 27 74 74 70 64 60 58 54 28 75 72 10 0.01 70 61 58 56 50 44 19 72 66 62 60 56 51 23 73 69 63 60 58 54 27 74 74 72 64 61 58 54 28 75 72 10 0.01 70 61 58 57 51 45 20 73 68 63 61 57 52 27 74 70 64 60 58 54 28 75 72 10 0.01 70 61 58 57 51 45 20 73 68 63 61 57 52 25 75 71 66 64 60 56 28 75 74 70 1200 0.01 70 61 58 57 51 45 20 73 68 63 61 57 52 25 75 71 66 64 60 56 28 75 74 70 1200 0.01 70 61 58 57 51 45 20 73 68 63 61 57 52 25 75 71 66 64 60 56 28 75 74 70 1200 0.01 70 61 58 57 51 45 20 73 68 63 61 57 52 25 75 71 66 64 60 58 54 28 75 72 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 27 74 72 67 65 61 59 53 27 74 72 67 61 58 50 24 74 70 64 60 58 54 28 75 72 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 25 75 73 68 64 62 58 31 76 75 74 1000 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 27 74 70 65 63 59 31 76 74 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 27 74 70 65 63 59 33 76 76 75 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 71 66 64 60 34 77 77 77 77 77 70 70 70 70 70 70 70 70							
650 0.15 65 63 57 56 50 43 21 68 69 62 59 55 49 28 70 72 64 61 58 53 31 72 74 66 650 0.02 66 60 55 52 48 40 18 69 66 59 55 52 47 24 71 69 61 56 55 51 28 72 72 65 650 0.02 67 61 56 53 48 41 19 70 67 60 56 53 48 27 72 71 63 58 56 52 30 73 74 75 75 0.02 68 63 57 54 49 42 20 70 68 60 56 53 48 27 72 71 63 58 56 52 30 73 74 75 75 0.02 68 64 57 55 50 42 171 70 62 58 54 49 21 71 70 62 58 54 49 57 53 31 74 75 75 75 75 75 75 75 75 75 75 75 75 75							7
80							
8 700 0.02 67 61 56 53 48 41 19 70 67 60 56 53 47 25 71 70 62 57 55 51 29 72 73 74 75 8 700 0.02 67 62 56 54 49 41 20 70 68 60 56 53 48 27 72 71 63 58 56 52 30 73 74 75 8 800 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 8 800 0.04 68 60 56 53 49 43 18 70 65 60 57 54 49 21 71 67 62 59 57 53 24 72 59 9 900 0.05 68 61 57 54 50 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 74 70 9 900 0.06 69 61 57 54 50 44 19 72 66 61 57 55 50 23 73 68 63 59 57 54 25 74 70 9 900 0.01 69 60 57 55 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 28 75 72 9 900 0.01 69 60 57 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 10 1100 0.01 70 61 58 56 50 44 19 71 65 61 59 55 50 22 72 68 64 61 58 54 25 73 71 10 1100 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 12 12 1600 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 74 70 65 63 60 56 28 74 74 70 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 74 70 65 63 59 31 76 76 75 74 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 75 71 66 64 60 34 77 77 77 77 77 77 77 77 77 77 77 77 77		-					
8 700 0.02 67 62 56 54 49 41 20 70 68 60 56 53 48 27 72 71 63 58 56 52 30 73 74 75 800 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 800 0.04 67 59 56 53 49 43 17 70 64 60 57 54 49 21 71 67 62 59 57 53 24 72 69 850 0.04 68 60 56 53 49 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 9 900 0.05 68 61 57 54 50 44 19 72 66 61 57 55 50 24 74 70 64 60 58 54 27 74 71 9 900 0.06 69 61 57 54 50 44 19 72 66 61 58 55 50 24 74 74 70 64 60 58 54 27 74 71 100 0.01 70 61 58 56 50 44 19 72 67 61 58 55 50 24 74 70 65 63 60 55 28 75 72 10 1100 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 12 12 1600 0.01 69 63 61 57 55 48 21 73 70 66 62 59 55 24 74 70 65 63 59 31 76 76 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 12 16 16 16 16 16 16 16 16 16 16 16 16 16	72 63 57 57 54 3						
750 0.02 68 63 57 54 49 42 20 70 69 61 57 54 48 27 72 72 63 58 56 52 30 73 75 80 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 80 0.04 68 60 56 53 49 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 990 0.05 68 61 57 54 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 27 74 70 950 0.06 69 61 57 54 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 27 74 71 1000 0.01 70 61 58 55 50 44 19 72 66 62 60 56 51 23 73 69 63 60 58 54 28 75 72 1200 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 63 61 57 30 75 74 70 1200 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 70 65 63 60 56 28 74 74 70 1200 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 70 65 63 60 56 28 76 73 1400 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 25 75 72 67 63 61 57 30 75 74 120 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 72 67 63 61 59 53 27 74 72 67 63 61 59 53 27 74 72 67 63 61 59 53 27 74 70 65 63 60 55 28 75 74 70 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 58 53 25 75 73 68 64 62 58 31 76 75 74 70 64 60 58 54 27 74 74 70 64 60 58 54 28 75 72 67 65 61 59 50 24 74 70 65 63 60 55 28 75 74 70 65 63 60 57 57 74 70 64 60 58 54 28 75 72 67 65 61 57 75 74 70 64 60 58 54 28 75 74 70 64 60 58 54 28 75 72 67 65 61 57 75 74 70 64 60 58 54 28 75 72 67 65 61 57 75 74 70 64 60 58 54 28 75 72 67 65 61 57 75 74 70 64 60 58 54 28 75 75 74 70 64 60 58 54 28 75 75 74 70 64 60 58 54 28 75 75 75 75 75 75 75 75 75 75 75 75 75							
800 0.03 68 64 57 55 50 42 21 71 70 62 58 54 49 28 72 73 64 59 57 53 31 74 75 68 69 0.04 67 59 56 53 49 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 69 90 0.05 68 61 57 54 50 43 18 70 65 60 57 55 50 23 73 68 63 59 57 54 25 74 70 1000 0.06 69 62 58 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 10 1000 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 74 70 65 63 61 57 30 75 74 120 0.01 69 63 61 56 54 47 07 0 64 62 57 55 48 21 73 70 66 62 59 55 24 74 70 65 63 69 58 64 62 58 31 76 74 70 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 64 65 58 58 10 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 64 65 58 54 28 75 72 1200 0.01 70 64 62 57 55 48 21 73 70 65 62 59 55 28 75 74 70 64 60 58 54 28 75 72 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 74 70 64 60 58 54 28 75 72 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 74 74 74 75 65 63 60 58 75 74 75 75 75 75 75 75 75 75 75 75 75 75 75		52 30 7	72 71 63 58 56 52		67 62 56 54 49 41 20	700 0.02	8
800 0.04 67 59 56 53 49 43 17 70 64 60 57 54 49 21 71 67 62 59 57 53 24 72 69 850 0.04 68 60 56 53 49 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 990 0.05 68 61 57 54 50 43 18 71 66 61 57 55 50 23 73 68 63 59 57 54 25 74 70 950 0.06 69 61 57 54 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 27 74 71 1000 0.01 69 60 57 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 10 1000 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 12 12 1600 0.01 71 62 59 57 53 46 18 71 67 63 69 55 50 22 73 68 64 61 58 54 28 75 72 1400 0.01 72 63 60 58 52 46 23 74 68 64 64 62 58 53 25 74 70 65 63 60 56 29 76 74 72 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 74 12 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 74 12 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 74 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 1800 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 56 34 77 77 77 77 77 77 77 77 77 77 77 77 77							
850 0.04 68 60 56 53 49 43 18 70 65 60 57 54 50 22 72 68 62 59 57 54 25 73 70 9 900 0.05 68 61 57 54 50 43 18 71 66 61 57 55 50 23 73 68 63 59 57 54 25 74 70 950 0.06 69 61 57 54 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 27 74 71 1000 0.06 69 62 58 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 1000 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 10 1100 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 1200 0.01 71 62 59 57 52 45 22 73 68 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 65 61 56 30 76 74 72 1200 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 72 67 63 61 57 30 75 74 72 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 69 50 24 77 77 77 77 77 77 77 77 77 77 77 77 77	75 66 60 59 56 3		72 73 64 59 57 53	71 70 62 58 54 49 28	68 64 57 55 50 42 21	800 0.03	
9 900 0.05 68 61 57 54 50 43 18 71 66 61 57 55 50 23 73 68 63 59 57 54 25 74 70 1000 0.06 69 62 58 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 1000 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 110 1100 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 1200 0.01 71 62 59 57 52 45 22 73 68 64 61 58 53 25 75 72 1200 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 75 75 76 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 18 71 67 63 59 57 52 24 73 70 65 62 60 56 28 74 74 70 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 60 57 73 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 70 65 63 60 56 28 74 74 74 74 74 74 74 74 74 74 74 74 74	69 64 60 59 56 2	53 24 7	71 67 62 59 57 53			800 0.04	
950 0.06 69 61 57 54 50 44 19 72 66 61 58 55 50 24 74 70 64 60 58 54 27 74 71 1000 0.06 69 62 58 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72 1000 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 110 1100 0.01 70 61 58 57 51 45 20 73 67 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 71 62 59 57 52 45 22 73 68 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 65 61 56 30 76 74 72 12 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 31 76 75 74 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 31 76 75 74 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 75 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77	70 64 61 59 56 2	54 25 7			68 60 56 53 49 43 18	850 0.04	
1000 0.06 69 62 58 55 50 44 19 72 67 61 58 55 50 24 74 70 64 60 58 54 28 75 72		54 25 7	73 68 63 59 57 54	71 66 61 57 55 50 23	68 61 57 54 50 43 18	900 0.05	9
900 0.01 69 60 57 55 50 44 19 71 65 61 59 55 50 22 72 68 64 61 58 54 25 73 71 1000 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 1100 0.01 70 61 58 57 51 45 20 73 67 63 61 56 51 24 74 70 65 63 60 55 28 75 72 1200 0.01 71 62 59 57 52 45 22 73 68 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 65 61 56 30 76 74 1400 0.01 68 62 59 55 54 47 20 72 69 65 61 59 53 27 74 72 67 63 61 57 30 75 74 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 1800 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77	71 65 61 60 57 2					950 0.06	
100 0.01 70 61 58 56 50 44 20 72 66 62 60 56 51 23 73 69 65 62 59 55 27 74 72 73 74 74 74 74 74 74 74	72 65 62 60 57 3	-					
10							
1200 0.01 71 62 59 57 52 45 22 73 68 63 61 57 52 25 75 71 66 64 60 56 29 76 73 1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 65 61 56 30 76 74 1200 0.01 68 62 59 55 53 46 18 71 67 63 59 57 52 24 73 70 65 62 60 56 28 74 72 1200 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77 1201 73 74 74 74 74 74 74 74							
1300 0.01 72 63 60 58 52 46 23 74 68 64 62 58 53 25 75 72 67 65 61 56 30 76 74 12 12 1600 0.01 68 62 57 55 48 21 73 70 66 62 59 55 48 21 73 70 66 62 59 55 28 75 72 67 63 61 57 30 75 74 12 1600 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77							10
1200 0.01 68 62 59 55 53 46 18 71 67 63 59 57 52 24 73 70 65 62 60 56 28 74 72 1400 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 72 67 63 61 57 30 75 74 160 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77							
1400 0.01 69 63 61 56 54 47 20 72 69 65 61 59 53 27 74 72 67 63 61 57 30 75 74 12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77	74 68 66 63 59 3						
12 1600 0.01 70 64 62 57 55 48 21 73 70 66 62 59 55 28 75 73 68 64 62 58 31 76 75 1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 76 76 76 76 76	72 67 64 62 59 3						
1800 0.01 71 66 63 58 55 49 23 74 71 67 63 60 56 29 75 74 70 65 63 59 33 76 76 2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77							
2000 0.01 71 67 64 59 56 50 24 74 72 68 64 61 56 30 76 75 71 66 64 60 34 77 77							12
1500 0.02 65 56 56 53 50 44 14 68 62 61 59 57 53 18 70 66 63 62 62 59 23 72 68		-					
	68 65 65 65 62 2						
1800 0.03 66 58 58 53 50 44 15 69 64 62 59 58 53 21 71 67 65 63 62 59 24 73 70							
14 2100 0.04 67 59 59 54 51 44 17 70 65 64 60 58 54 22 72 68 66 63 63 59 25 74 71							14
2400 0.05 68 60 60 54 51 44 18 71 66 65 60 59 54 23 73 69 68 64 63 59 27 74 72							
2700 0.06 68 61 61 54 51 45 18 72 67 66 61 59 54 24 74 70 69 64 63 60 28 75 73							
	67 63 63 61 57 2						
2400 0.02 67 61 59 55 53 46 17 70 65 63 60 58 52 22 72 67 64 62 61 56 24 73 69							
16 2800 0.03 68 63 61 57 55 48 20 72 67 65 61 59 54 24 74 69 66 64 62 57 27 75 71							16
3200 0.04 70 64 63 58 56 49 21 73 68 66 62 60 55 25 75 71 68 65 63 59 29 76 72							
3600 0.05 71 66 65 59 57 50 23 74 70 68 63 61 56 28 76 72 70 66 64 60 30 78 74							
3900 0.03 74 69 66 62 61 56 27 79 74 71 67 67 62 33 82 77 74 69 70 66 36 84 79	79 76 71 72 68 3	66 36 8					
4600 0.04 75 70 67 63 63 58 28 80 76 73 68 68 64 35 83 79 76 71 71 67 38 86 81	81 78 73 74 70 4	67 38 8	83 79 76 71 71 67	80 76 73 68 68 64 35	75 70 67 63 63 58 28		
40 5300 0.06 77 72 69 65 64 60 30 82 77 74 69 70 65 36 85 80 77 72 73 69 40 87 82	82 79 74 75 71 4	69 40 8	85 80 77 72 73 60	82 77 74 69 70 65 36	77 72 69 65 64 60 30		40
6000 0.07 78 73 70 66 65 61 31 83 78 75 71 71 67 37 86 81 78 73 74 70 41 88 83	83 80 75 76 73 4	70 41 8	03 00 11 12 13 03	83 78 75 71 71 67 37	78 73 70 66 65 61 31		
6700 0.09 79 74 71 67 62 33 84 79 76 72 72 68 38 87 82 79 74 75 71 42 89 84	84 81 76 77 74 4	71 42 8	86 81 78 73 74 70	84 79 76 72 72 68 38	79 74 71 67 67 62 33	6700 0.09	

- Discharge sound is the noise emitted from the unit discharge into the downstream ductwork.
- Min ΔPs is the static pressure drop from the unit inlet to the unit outlet with primary damper full open.
- Sound power levels are in dB, ref 10⁻¹² watts.
- Sound performance based on units lined with standard dual density fiberglass lining.
- All performance based on tests conducted in accordance with ASHRAE 130-2008 and AHRI 880-2008.
- All NC levels determined using AHRI 885-2008 Appendix E. See Terminal Unit Engineering Guidelines.
- Dash (-) in space denotes NC value less than NC10.
- Only highlighted data points are AHRI certified. See page M24 for AHRI Certified Performance Listings.

Single/Dual Duct Terminals

PESV, AESV, DESV / HOT WATER COIL CAPACITY, MBH / 3- AND 4-ROW

	Rows/		Head				A	irflow, cf	m			
	Circuits	gpm	Loss	50	100	150	200	250	300	350	400	450
	Three-	2.0	1.31	6.2	11.0	14.9	18.1	20.9	23.3	25.4	27.3	28.9
	Row	3.0	2.63	6.2	11.2	15.3	18.8	21.9	24.5	26.9	29.1	31.0
φ	Multi-	5.0	6.43	6.3	11.4	15.7	19.4	22.7	25.6	28.3	30.7	32.9
4-5	Circuit	6.0	8.88	6.3	11.4	15.8	19.6	22.9	25.9	28.7	31.2	33.5
Sizes 4-5-6		Airside	e ΔPs	0.01	0.03	0.06	0.10	0.14	0.20	0.26	0.33	0.40
Si	Four-	3.0	1.59	6.5	12.1	16.9	21.1	24.7	27.9	30.7	33.3	35.6
	Row	4.0	2.61	6.5	12.2	17.2	21.5	25.3	28.7	31.8	34.6	37.2
	Multi-	6.0	5.28	6.5	12.3	17.4	21.9	26.0	29.6	33.0	36.0	38.8
	Circuit	8.0	8.77	6.5	12.4	17.5	22.2	26.3	30.1	33.6	36.8	39.8
		Airside	e ΔPs	0.01	0.04	0.08	0.13	0.19	0.26	0.34	0.43	0.53
	Rows/		Head				Α	irflow, cf	m			
	Circuits	gpm	Loss	100	200	300	400	500	600	700	800	900
	Three-	2.0	0.79	11.5	19.2	24.8	29.2	32.7	35.6	38.1	40.2	42.0
	Row	4.0	2.63	11.8	20.3	27.0	32.5	37.0	41.0	44.4	47.4	50.1
∞	Multi-	6.0	5.31	11.9	20.8	27.9	33.7	38.8	43.2	47.0	50.5	53.6
-/ (Circuit	8.0	8.80	11.9	21.0	28.3	34.4	39.7	44.4	48.5	52.2	55.6
Sizes 7-8		Airside	e ΔPs	0.02	0.06	0.12	0.20	0.29	0.40	0.53	0.67	0.83
S	Four-	4.0	2.04	12.6	22.6	30.6	37.2	42.7	47.5	51.7	55.3	58.6
	Row	6.0	4.12	12.7	23.0	31.5	38.7	44.9	50.3	55.0	59.3	63.2
	Multi-	8.0	6.79	12.7	23.2	32.0	39.5	46.0	51.8	56.9	61.6	65.8
	Circuit	10.0	10.04	12.7	23.4	32.3	40.0	46.8	52.8	58.1	63.0	67.5
		Airside	e ΔPs	0.02	0.08	0.16	0.26	0.39	0.53	0.70	0.89	1.10
	Rows/		Head				А	irflow, cf	m			
	Circuits	gpm	Loss	200	300	400	500	600	700	800	900	1000
	Three-	3.0	1.18	21.5	28.8	34.7	39.7	43.9	47.5	50.8	53.6	56.2
		0.0					37.1					
	Row	5.0	2.85	22.1	30.1	36.8	42.5	47.6	52.0	56.0	59.6	62.9
10	Row Multi-	5.0 7.0		22.1 22.4					54.3		59.6 62.7	66.4
9-10		5.0	2.85	22.1	30.1	36.8	42.5	47.6		56.0		
zes 9-10	Multi-	5.0 7.0	2.85 5.11 7.92	22.1 22.4	30.1 30.7	36.8 37.8	42.5 43.9	47.6 49.4	54.3	56.0 58.7	62.7	66.4
Sizes 9-10	Multi-	5.0 7.0 9.0	2.85 5.11 7.92	22.1 22.4 22.6	30.1 30.7 31.1	36.8 37.8 38.3	42.5 43.9 44.7	47.6 49.4 50.4	54.3 55.6	56.0 58.7 60.3	62.7 64.5	66.4 68.5
Sizes 9-10	Multi- Circuit	5.0 7.0 9.0 Airside	2.85 5.11 7.92 e ΔPs	22.1 22.4 22.6 0.03	30.1 30.7 31.1 0.06	36.8 37.8 38.3 0.10	42.5 43.9 44.7 0.15	47.6 49.4 50.4 0.21	54.3 55.6 0.27	56.0 58.7 60.3 0.34	62.7 64.5 0.42	66.4 68.5 0.51
Sizes 9-10	Multi- Circuit Four-	5.0 7.0 9.0 Airside 4.0	2.85 5.11 7.92 e \(\Delta Ps \) 1.72	22.1 22.4 22.6 0.03 23.9	30.1 30.7 31.1 0.06 33.0	36.8 37.8 38.3 0.10 40.7	42.5 43.9 44.7 0.15 47.3	47.6 49.4 50.4 0.21 53.0	54.3 55.6 0.27 58.0	56.0 58.7 60.3 0.34 62.5	62.7 64.5 0.42 66.5	66.4 68.5 0.51 70.1
Sizes 9-10	Multi- Circuit Four- Row	5.0 7.0 9.0 Airside 4.0 5.0	2.85 5.11 7.92 e ΔPs 1.72 2.53	22.1 22.4 22.6 0.03 23.9 24.1	30.1 30.7 31.1 0.06 33.0 33.5	36.8 37.8 38.3 0.10 40.7 41.6	42.5 43.9 44.7 0.15 47.3 48.6	47.6 49.4 50.4 0.21 53.0 54.7	54.3 55.6 0.27 58.0 60.2	56.0 58.7 60.3 0.34 62.5 65.1	62.7 64.5 0.42 66.5 69.5	66.4 68.5 0.51 70.1 73.5
Sizes 9-10	Multi- Circuit Four- Row Multi-	5.0 7.0 9.0 Airside 4.0 5.0 8.0	2.85 5.11 7.92 2 ΔPs 1.72 2.53 5.71 8.41	22.1 22.4 22.6 0.03 23.9 24.1 24.4	30.1 30.7 31.1 0.06 33.0 33.5 34.3	36.8 37.8 38.3 0.10 40.7 41.6 43.0	42.5 43.9 44.7 0.15 47.3 48.6 50.6	47.6 49.4 50.4 0.21 53.0 54.7 57.5	54.3 55.6 0.27 58.0 60.2 63.7	56.0 58.7 60.3 0.34 62.5 65.1 69.4	62.7 64.5 0.42 66.5 69.5 74.5	66.4 68.5 0.51 70.1 73.5 79.3
Sizes 9-10	Multi- Circuit Four- Row Multi-	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0	2.85 5.11 7.92 2 ΔPs 1.72 2.53 5.71 8.41	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9	62.7 64.5 0.42 66.5 69.5 74.5 76.4	66.4 68.5 0.51 70.1 73.5 79.3 81.5
Sizes 9-10	Multi- Circuit Four- Row Multi- Circuit	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0	2.85 5.11 7.92 ΔPs 1.72 2.53 5.71 8.41	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9	62.7 64.5 0.42 66.5 69.5 74.5 76.4	66.4 68.5 0.51 70.1 73.5 79.3 81.5
Sizes 9-10	Multi- Circuit Four- Row Multi- Circuit	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside	2.85 5.11 7.92 2.53 5.71 8.41 2.4Ps Head	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68
Sizes 9-10	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside	2.85 5.11 7.92 2.53 5.71 8.41 2.4Ps Head Loss	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68
	Multi-Circuit Four-Row Multi-Circuit Rows/ Circuits Three-	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0	2.85 5.11 7.92 2.42 2.53 5.71 8.41 2.42 4.42 4.42 4.43 4.44 4.44 4.44 4.44	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 7m 1300 61.9	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68
12	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0	2.85 5.11 7.92 2.53 5.71 8.41 2.62 4.0ss 1.50 2.46	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7
12	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row Multi-	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0 6.0	2.85 5.11 7.92 2.53 5.71 8.41 2.40 Loss 1.50 2.46 4.94 8.14	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9 32.6	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08 500 40.6 45.6 47.5	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2 59.3	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6 69.0	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6 77.2	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4 84.3	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5 90.5	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8 95.9	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7 100.8
	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row Multi-	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0 6.0 8.0	2.85 5.11 7.92 2.53 5.71 8.41 2.40 Loss 1.50 2.46 4.94 8.14	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9 32.6 33.0	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08 500 40.6 45.6 47.5 48.5	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2 59.3 61.0	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6 69.0 71.4	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6 77.2 80.4	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4 84.3 88.2	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5 90.5 95.0	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8 95.9 101.2	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7 100.8 106.7
12	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row Multi- Circuit	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0 6.0 8.0	2.85 5.11 7.92 2.53 5.71 8.41 2.46 4.94 8.14 2.48	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9 32.6 33.0 0.03	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08 500 40.6 45.6 47.5 48.5 0.09	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2 59.3 61.0 0.16	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6 69.0 71.4 0.24	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6 77.2 80.4 0.35	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4 84.3 88.2 0.47	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5 90.5 95.0 0.60	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8 95.9 101.2 0.75	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7 100.8 106.7 0.91
12	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row Multi- Circuit	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0 6.0 8.0 Airside 4.5	2.85 5.11 7.92 2.53 5.71 8.41 2.40 Head Loss 1.50 2.46 4.94 8.14 2.40 8.14	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9 32.6 33.0 0.03	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08 500 40.6 45.6 47.5 48.5 0.09	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2 59.3 61.0 0.16 65.3	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6 69.0 71.4 0.24 76.0	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6 77.2 80.4 0.35	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4 84.3 88.2 0.47 92.4	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5 90.5 95.0 0.60 98.8	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8 95.9 101.2 0.75	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7 100.8 106.7 0.91
12	Multi- Circuit Four- Row Multi- Circuit Rows/ Circuits Three- Row Multi- Circuit	5.0 7.0 9.0 Airside 4.0 5.0 8.0 10.0 Airside gpm 3.0 4.0 6.0 8.0 Airside 4.5 5.0	2.85 5.11 7.92 2.53 5.71 8.41 2.40 4.94 8.14 2.40 8.14 2.40 8.14 2.67 3.20	22.1 22.4 22.6 0.03 23.9 24.1 24.4 24.6 0.04 300 29.7 31.9 32.6 33.0 0.03 35.2 35.4	30.1 30.7 31.1 0.06 33.0 33.5 34.3 34.6 0.08 500 40.6 45.6 47.5 48.5 0.09 52.0 52.6	36.8 37.8 38.3 0.10 40.7 41.6 43.0 43.5 0.13 700 48.3 56.2 59.3 61.0 0.16 65.3 66.2	42.5 43.9 44.7 0.15 47.3 48.6 50.6 51.4 0.20 A 900 53.9 64.6 69.0 71.4 0.24 76.0 77.4	47.6 49.4 50.4 0.21 53.0 54.7 57.5 58.5 0.27 irflow, cf 1100 58.4 71.6 77.2 80.4 0.35 84.9 86.7	54.3 55.6 0.27 58.0 60.2 63.7 65.0 0.36 m 1300 61.9 77.4 84.3 88.2 0.47 92.4 94.7	56.0 58.7 60.3 0.34 62.5 65.1 69.4 70.9 0.46 1500 64.8 82.5 90.5 95.0 0.60 98.8 101.5	62.7 64.5 0.42 66.5 69.5 74.5 76.4 0.56 1700 67.3 86.8 95.9 101.2 0.75 104.4 107.5	66.4 68.5 0.51 70.1 73.5 79.3 81.5 0.68 1900 69.4 90.7 100.8 106.7 0.91 109.4 112.8

Single/Dual Duct Terminals

PESV, AESV, DESV / HOT WATER COIL CAPACITY, MBH / 3- AND 4-ROW

	Rows/		Head				Α	irflow, cf	m			
	Circuits	gpm	Loss	400	700	1000	1300	1600	1900	2200	2500	2800
	Three-	4.0	1.95	42.5	62.2	76.5	87.5	96.3	103.5	109.5	114.7	119.1
	Row	5.0	2.87	43.2	64.2	79.9	92.2	102.2	110.5	117.6	123.7	129.0
	Multi-	6.0	3.93	43.7	65.6	82.2	95.5	106.4	115.6	123.5	130.4	136.5
14	Circuit	8.0	6.44	44.4	67.3	85.3	99.9	112.2	122.7	131.8	139.9	147.0
Size 14		Airside	èΔPs	0.03	0.08	0.15	0.24	0.34	0.46	0.60	0.75	0.92
	Four-	6.0	2.77	47.6	73.2	93.0	108.8	121.8	132.6	141.8	149.7	156.7
	Row	6.0	2.77	47.6	73.2	93.0	108.8	121.8	132.6	141.8	149.7	156.7
	Multi-	8.0	4.55	48.2	75.2	96.7	114.3	129.1	141.7	152.6	162.1	170.5
	Circuit	10.0	6.67	48.6	76.4	99.0	117.9	133.9	147.7	159.7	170.4	180.0
		Airside	èΔPs	0.04	0.10	0.20	0.31	0.45	0.61	0.79	1.00	1.22
	Rows/		Head					irflow, cf				,
	Circuits	gpm	Loss	600	1000	1400	1800	2200	2600	3000	3400	3800
	Three-	6.0	1.54	60.4	84.3	101.8	115.5	126.4	135.5	143.1	149.7	155.5
	Row	8.0	2.54	61.9	87.8	107.4	123.0	135.9	146.7	155.9	164.0	171.0
	Multi-	10.0	3.73	62.9	90.0	111.1	128.1	142.2	154.3	164.7	173.8	182.0
9 16	Circuit	12.0	5.10	63.5	91.6	113.7	131.7	146.8	159.8	171.1	181.1	190.0
Size		Airside	e ΔPs	0.04	0.11	0.20	0.31	0.44	0.59	0.76	0.94	1.15
	Four-	9.0	2.79	68.9	100.8	125.6	145.5	161.9	175.8	187.7	198.0	207.0
	Row	10.0	3.34	69.3	101.9	127.5	148.3	165.6	180.2	192.8	203.9	213.6
	Multi-	11.0	3.94	69.7	102.9	129.2	150.7	168.6	184.0	197.3	208.9	219.2
	Circuit	12.0	4.57	69.9	103.6	130.5	152.7	171.3	187.2	201.1	213.3	224.2
		Airside		0.06	0.14	0.26	0.40	0.58	0.78	1.00	1.25	1.52
	Rows/		Head					irflow, cf				
	Circuits	gpm	Loss	600	1200	1800	2400	3000	3600	4200	4800	5400
	Three-	6.0	1.69	66.6	107.8	135.8	156.2	171.9	184.4	194.6	203.2	210.4
	Row	8.0	2.78	67.9	112.5	144.3	168.4	187.5	203.0	216.0	227.0	236.6
x 16	Multi-	10.0	4.08	68.7	115.4	149.8	176.4	197.9	215.7	230.8	243.8	255.1
24 ×	Circuit	12.0	5.57	69.3	117.4	153.6	182.1	205.4	225.0	241.7	256.2	269.0
Size 2		Airside		0.02	0.07	0.14	0.23	0.33	0.46	0.61	0.77	0.95
Si	Four-	9.0	3.01	73.7	127.6	167.4	198.0	222.2	242.0	258.4	272.3	284.3
	Row	10.0	3.61	74.0	129.0	170.3	202.4	228.2	249.4	267.2	282.4	295.5
	Multi-	11.0	4.25	74.3	130.2	172.7	206.1	233.2	255.7	274.7	291.0	305.1
	Circuit	12.0	4.93	74.5	131.1	174.7	209.3	237.6	261.2	281.2	298.5	313.6
		Airside	PS	0.03	0.09	0.18	0.30	0.44	0.61	0.80	1.02	1.25

- All coil performance in accordance with AHRI 410-2001.
- · Heating capacities are in MBH.
- Data based on 180°F entering water and 55°F entering air.
- For temperature differentials other than 125°, multiply MBH by correction factors below.
- · Head loss is in feet of water.
- Always supply water to lowest connection pipe to prevent air entrapment.
- Air temperature rise = 927 x MBH/cfm.

- Water temperature drop = 2.04 x MBH/gpm.
- Connection size is ½-in OD male solder for 1-row coil sizes 04-08. All other coils have ¾-in OD male solder.
- Coils are not intended for steam applications and are labeled for a maximum water temperature of 200°F.
- Coils are tested for leakage at test pressure of 500 psi.
- Water volumes less than those shown may result in laminar flow and reduced heating capacity.
 If possible reduce the number of coil rows to increase water velocity into turbulent range.

Correction Factors for Other Entering Conditions

ΔΤ	50	60	70	80	90	100	110	125	140	150
Factor	0.40	0.48	0.56	0.64	0.72	0.80	0.88	1.00	1.12	1.20

Note: Airside DPs reflects the air pressure drop of the hot water coil.

D-TDV 11-11-02

Square and Rectangular Ceiling Diffusers Steel • Louvered Face • Induction Vanes

Model: TDV • Square, Rectangle or Round Neck

Border Types, Dimensions (Continued)

*Note: Dimension A refers to either square/rectangle or round neck diffusers. See drawings below.

Available Duct Sizes, Square and Rectangular Necks

Border Typ	e 1, 5, 6
Minimum Duct Size A	Maximum Duct Size A
6 x 6	48 x 48

Border Type 2, 3, 4								
Available Module Size	Minimum Duct Size A	Maximum Duct Size A						
12 x 12	6 x 6	9 x 9						
24 x 24	6 x 6	18 x 18						
48 x 24	12 x 12	42 x 18						

Note: Duct sizes are available in 3" increments only. Maximum duct size for border 5 is 36 x 36.

Available Duct Sizes, Round Necks

Borde	er Type 1, 5, 6
Dimensions A	Available Round Duct Size
6 x 6	6
9 x 9	6, 8
12 x 12	8, 10, 12
15 x 15	6, 8, 10, 12, 14
18 x 18	6, 8, 10, 12, 14, 16

В	order Type	2,3,4
Available Module Size	Minimum A	Available Round Duct Size
12 x 12	6 x 6	6
12 % 12	9 x 9	6, 8
	6 x 6	6
	9 x 9	6, 8
24 x 24	12 x 12	6, 8, 10, 12
	15 x 15	6, 8, 10, 12, 14
	18 x 18	6, 8, 10, 12
		14, 16

*Note: Round duct sizes are available only in sizes shown.

Accessories (Optional) for Round Neck

Check if provided

Accessories (Optional) for Rectangular Neck

Check [] if provided

All dimensions are in inches.

Accessories (Optional)

Check if provided

Δ.	Accessories		Nominal Round Duct Sizes										
	003301103	6	8	10	12	14	16						
	AG-100	•	•	•	•	•	N/A						
	D-100	•	•	•	•	•	N/A						
	AG-85	•	•	•	•	•	•						
	AG-65	•	•	•	•	•	•						
	EG	•	•	•	•	•	•						
	EQT	•	•	•	•	•	•						

Accessories	Nominal Rectangular Duct Sizes
AG-95 Type 1	
AG-35B	Available in Cines
EG-L/EG-S	Available in Sizes 6 x 6 through 18 x 18
AG-65-L/AG-65-S	o x o amough to x to
EQT	

[•] Available Sizes

(Optional)

Standard Finish: #26 White

Model SR Square-to-Round Transition

11-11-02

Optional Patterns

Removing Center Core

Remove shipping clips.

2. Push core sideways against spring.

3. Hold core securely and allow to drop down.

General Description

- TITUS Model TDV is a high capacity ceiling diffuser. Because it maintains an unbroken horizontal flow pattern from maximum cfm down to minimum, it is an excellent choice for variable air volume application.
- · Core is removable from the face of the diffuser.
- Slot operator on optional, neck-mounted Model AG-95 damper allows easy volume adjustment by removing the diffuser core. (Rectangular necks only).
- Model TDV is extremely flexible, with cores available for 1, 2, 3 or 4-way horizontal flow patterns.
- · Material is heavy gauge steel.
- The TITUS TDV has louvered face with integrated induction vanes for exceptional air mixing.

Diffusers | Square and Rectangular, Induction Vanes | Performance Data

Performance Data • Round Neck

TDV • Louvered Face, Induction Vanes • Horizontal Discharge Pattern

	Factors	Total cfm		78		98		117		137		156		176		215
	1.1 TP	Total Pressure	(0.031	(0.050	(0.071	(0.097	(0.126	(0.160	C).239
Add 1	I to NC	NC Side	cfm	9 Throw	cfm	15 Throw	cfm	20 Throw	cfm	24 Throw	cfm	28 Throw	cfm	31 Throw	cfm	37 Throw
6	S1	X	78	6-9-17	98	7-11-20	117	9-13-21	137	10-15-23	156	12-17-25	176	13-19-26	215	16-21-29
X	S2&G2	X & Y	39	3-5-10	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21
6	A3	X	28	3-4-8	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-13-21
6"	AS	Ŷ	19	2-3-6	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13
Round	A4	X & Y	19	2-3-6	29	3-4-8	34	3-5-9	39	4-5-10	44	4-6-11	54	5-7-12	64	6-8-13
	Factors	Total cfm		98		117		137		156		176		215		254
	1.1 TP	Total Pressure	(0.050		0.071		0.097).126		0.160	(0.239		0.334
Add 1	L to NC	NC		15		20		24		28		31		37		41
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
9	S1	Х	98	7-11-20	117	9-13-21	137	10-15-23	156	12-17-25	176	13-19-26	215	16-21-29	254	18-22-32
Х	S2&G2	X & Y	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21	127	11-16-22
9	A3	X	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-9-13	96	8-10-14
6"		Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
Round	A4 Factors	X & Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
	Factors 1.1 TP	Total cfm Total Pressure	,	139 0.032		174 0.049		209 0.071		244).097		279 0.127		314 0.161		383).239
	L to NC	NC NC	(10	(16	(21	(25	(29	(32		38
Auu 1	LONC	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
9	S1	X	139	8-12-23	174	10-15-26	209	12-18-29	244	14-21-31	279	16-23-33	314	18-25-35	383	22-27-39
X	S2&G2	X & Y	70	4-6-13	87	5-8-16	105	6-10-19	122	8-11-22	140	9-13-23	157	10-15-25	192	12-18-27
9	A3	X	52	4-5-10	66	4-7-11	79	5-8-13	92	6-9-14	105	7-10-15	119	8-11-15	145	10-12-17
8"		Υ	35	3-4-8	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17
Round	A4	X & Y	35	3-4-8	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17
Return	Factors	Total cfm		174		209		244		279		314		383		453
	1.1 TP	Total Pressure	(0.049	(0.071	(0.097	().127	(0.161	(0.239	C).335
Add 1	I to NC	NC	_	16		21	_	25	_	29		32	_	38	_	42
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
12	S1	X	174	10-15-26	209	12-18-29	244	14-21-31	279	16-23-33	314	18-25-35	383	22-27-39	453	24-30-42
x 12	S2&G2	X & Y	87	5-8-16 4-7-11	105	6-10-19	122	8-11-22	140	9-13-23 7-10-15	157	10-15-25 8-11-15	192	12-18-27 10-12-17	227	14-21-30 11-13-18
8"	A3	X Y	66 44	4-7-11 3-5-10	79 52	5-8-13 4-6-12	92 61	6-9-14 5-7-14	105 70	6-8-15	119 79	8-11-15 6-9-16	145 96	8-11-17	171 113	9-13-18
Round	A4	X & Y	44	3-5-10	52	4-6-12	61	5-7-14	70	6-8-15	79	6-9-16	96	8-11-17	113	9-13-19
	Factors	Total cfm		218				327	Ť	381						
	1.1 TP					212		321				44/		490		599
		Total Pressure	(0.032	(272 0.049	(0.072	(0.097	(447 0.127		490 0.161		
1	1 to NC	NC	(0.032 11	((((599
		NC Side	cfm	11 Throw	cfm	0.049 17 Throw	cfm	0.072 22 Throw	cfm	0.097 26 Throw	cfm	0.127 30 Throw	cfm	0.161 33 Throw	cfm	599).240 38 Throw
12	S1	NC Side X	cfm 218	11 Throw 10-15-29	cfm 272	0.049 17 Throw 12-18-33	cfm 327	0.072 22 Throw 15-22-36	cfm 381	0.097 26 Throw 17-26-39	cfm 436	0.127 30 Throw 20-29-41	cfm 490	0.161 33 Throw 22-31-44	cfm 599	599 0.240 38 Throw 27-34-48
12 x	\$1 \$2&G2	NC Side X X & Y	cfm 218 109	11 Throw 10-15-29 5-8-16	cfm 272 136	0.049 17 Throw 12-18-33 7-10-20	cfm 327 164	0.072 22 Throw 15-22-36 8-12-24	cfm 381 191	0.097 26 Throw 17-26-39 9-14-27	cfm 436 218	0.127 30 Throw 20-29-41 11-16-29	cfm 490 245	0.161 33 Throw 22-31-44 12-18-31	cfm 599 300	599).240 38 Throw 27-34-48 15-22-34
12 x 12	S1	NC Side X X & Y X & Y	cfm 218 109 82	11 Throw 10-15-29 5-8-16 4-7-13	cfm 272 136 103	17 Throw 12-18-33 7-10-20 6-8-14	cfm 327 164 123	0.072 22 Throw 15-22-36 8-12-24 7-10-16	cfm 381 191 144	0.097 26 Throw 17-26-39 9-14-27 8-12-17	cfm 436 218 165	0.127 30 Throw 20-29-41 11-16-29 9-13-18	cfm 490 245 185	0.161 33 Throw 22-31-44 12-18-31 10-14-19	cfm 599 300 226	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21
12 x 12 10"	S1 S2&G2 A3	NC Side X X & Y X & Y Y	cfm 218 109 82 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10	cfm 272 136 103 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13	cfm 327 164 123 82	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16	cfm 381 191 144 95	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17	cfm 436 218 165 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18	cfm 490 245 185 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20	cfm 599 300 226 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22
12 x 12 10" Round	S1 S2&G2 A3	NC Side X X & Y X & Y Y	cfm 218 109 82	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10	cfm 272 136 103	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13	cfm 327 164 123	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16	cfm 381 191 144	26 Throw 17-26-39 9-14-27 8-12-17 6-9-17	cfm 436 218 165	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18	cfm 490 245 185	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20	cfm 599 300 226 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22
12 x 12 10" Round	S1 S2&G2 A3 A4 Factors	NC Side X X & Y Y Y X & Y Total cfm	cfm 218 109 82 55 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235	cfm 272 136 103 68 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 314	cfm 327 164 123 82 82	22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392	cfm 381 191 144 95 95	26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549	cfm 490 245 185 123 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628	cfm 599 300 226 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22
12 x 12 10" Round Return -SP =	S1 S2&G2 A3 A4 Factors 1.1 TP	NC Side X X & Y X & Y Y Total cfm Total Pressure	cfm 218 109 82 55 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10	cfm 272 136 103 68 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 314 0.035	cfm 327 164 123 82 82	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055	cfm 381 191 144 95 95	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107	cfm 490 245 185 123 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140	cfm 599 300 226 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177
12 x 12 10" Round Return -SP =	S1 S2&G2 A3 A4 Factors	NC Side X X & Y X & Y Y X & Y Total cfm Total Pressure NC	cfm 218 109 82 55 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235 0.020	cfm 272 136 103 68 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 314 0.035 15	cfm 327 164 123 82 82	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055 20	cfm 381 191 144 95 95	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25	cfm 436 218 165 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107 29	cfm 490 245 185 123 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140 33	cfm 599 300 226 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36
12 x 12 10" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP	NC Side X X & Y X & Y Y Total cfm Total Pressure	cfm 218 109 82 55 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235	cfm 272 136 103 68 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 314 0.035	cfm 327 164 123 82 82	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055	cfm 381 191 144 95 95	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107	cfm 490 245 185 123 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140	cfm 599 300 226 150 150	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36 Throw
12 x 12 10" Round Return -SP =	S1 S2&G2 A3 A4 Factors 1.1 TP 1 to NC	NC Side X X & Y X & Y Y X & Y Total cfm Total Pressure NC Side	cfm 218 109 82 55 55	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235 0.020 - Throw	cfm 272 136 103 68 68	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw	cfm 327 164 123 82 82	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw	cfm 381 191 144 95 95	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw	cfm 490 245 185 123 123 cfm 628	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140 33 Throw	cfm 599 300 226 150 150 cfm 706	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36 Throw 27-37-53
12 x 12 10" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP 1 to NC	NC Side X X & Y X Y Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y	cfm 218 109 82 55 55 cfm 235 118 89	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12	cfm 272 136 103 68 68 cfm 314 157	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15	cfm 327 164 123 82 82 (cfm 392	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17	cfm 381 191 144 95 95 (cfm 471	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19	cfm 436 218 165 109 109 cfm 549 275	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20	cfm 490 245 185 123 123 cfm 628 314	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22	cfm 599 300 226 150 150 cfm 706 353 267	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .1177 36 Throw 27-37-53 15-22-37 12-16-23
12 x 12 10" Round Return -SP = Add 1 12 x 12 12"	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3	NC Side X X & Y X Y Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y	cfm 218 109 82 55 55 cfm 235 118 89 59	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10	cfm 272 136 103 68 68 cfm 314 157 119 79	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13	cfm 327 164 123 82 82 (cfm 392 196 148 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16	cfm 381 191 144 95 95 (cfm 471 236 178 118	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19	cfm 436 218 165 109 109 cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21	cfm 490 245 185 123 123 cfm 628 314 237 157	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22	cfm 599 300 226 150 150 cfm 706 353 267 177	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round	S1 S2&G2 A3 A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4	NC Side X X & Y X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y	cfm 218 109 82 55 55 cfm 235 118 89	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10	cfm 272 136 103 68 68 cfm 314 157	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13	cfm 327 164 123 82 82 (cfm 392 196	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	cfm 381 191 144 95 95 cfm 471 236 178	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19	cfm 436 218 165 109 109 cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21	cfm 490 245 185 123 123 cfm 628 314 237	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 8-13-22	cfm 599 300 226 150 150 cfm 706 353 267 177	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 706 0.177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors	NC Side X X & Y X Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y Total Cfm	cfm 218 109 82 55 55 cfm 235 118 89 59	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 2-5-10 314	cfm 272 136 103 68 68 cfm 314 157 119 79	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13	cfm 327 164 123 82 82 82 cfm 392 196 148 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	cfm 381 191 144 95 95 (cfm 471 236 178 118	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549	cfm 436 218 165 109 109 cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 623	cfm 490 245 185 123 123 cfm 628 314 237 157	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706	cfm 599 300 226 150 150 cfm 706 353 267 177	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 863
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP =	S1 S2&G2 A3 A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP	NC Side X X & Y X Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y Total cfm Total Pressure	cfm 218 109 82 55 55 cfm 235 118 89 59	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 2-5-10 314 0.035	cfm 272 136 103 68 68 cfm 314 157 119 79	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 392 0.055	cfm 327 164 123 82 82 82 cfm 392 196 148 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 471 0.079	cfm 381 191 144 95 95 (cfm 471 236 178 118	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107	cfm 436 218 165 109 109 cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 623 0.138	cfm 490 245 185 123 123 cfm 628 314 237 157	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706 0.177	cfm 599 300 226 150 150 cfm 706 353 267 177	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .1177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 863 .264
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP =	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors	NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC NC NC	cfm 218 109 82 55 55 cfm 235 118 89 59	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 2-5-10 314 0.035	cfm 272 136 103 68 68 68 (cfm 314 157 119 79	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 392 0.055 19	cfm 327 164 123 82 82 82 cfm 392 196 148 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079	cfm 381 191 144 95 95 (cfm 471 236 178 118	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107 28	cfm 436 218 165 109 109 (cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 623 0.138 32	cfm 490 245 185 123 123 cfm 628 314 237 157	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22	cfm 599 300 226 150 150 cfm 706 353 267 177	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 863 .264
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	NC Side X X & Y X Y Y Total cfm Total Pressure NC Side X X & Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm	cfm 218 109 82 55 55 cfm 235 118 89 59 cfm	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 214 0.035 13 Throw	cfm 272 136 103 68 68 cfm 314 157 119 79	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 392 0.055 19 Throw	cfm 327 164 123 82 82 82 cfm 392 196 148 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079 24 Throw	cfm 381 191 144 95 95 (cfm 471 236 178 118	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107 28 Throw	cfm 436 218 165 109 109 cfm 549 275 207 137	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 623 0.138 32 Throw	cfm 490 245 185 123 123 cfm 628 314 237 157	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706 0.177 35 Throw	Cfm 599 300 226 150 150 Cfm 706 353 267 177 177 Cfm	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 863 .04 40 Throw
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP t to NC	NC Side X X & Y X Y Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X	cfm 218 109 82 55 55 cfm 235 118 89 59 cfm 314	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 2-5-10 314 0.035 13 Throw 12-18-35	cfm 272 136 103 68 68 Cfm 314 157 119 79 (cfm 392	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 392 0.055 19 Throw 15-23-39	cfm 327 164 123 82 82 (cfm 392 196 148 98 98	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079 24 Throw 18-27-43	cfm 381 191 144 95 95 (cfm 471 236 178 118 118 (cfm 549	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107 28 Throw 21-32-46	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 623 0.138 32 Throw 24-35-49	cfm 490 245 185 123 123	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706 0.177 35 Throw 27-37-53	cfm 599 300 226 150 150 C cfm 706 353 267 177 177 C cfm 863	599 0.240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 863 0.264 40 Throw 33-41-58
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2&G2	NC Side X X & Y X Y Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y	cfm 218 109 82 55 55 55 55 118 89 59 59 cfm 314 157	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 214 0.035 13 Throw 12-18-35 7-10-20	cfm 272 136 68 68 (Cfm 314 157 79 79 (Cfm 392 196	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 392 0.055 19 Throw 15-23-39 8-12-25	cfm 327 164 123 82 82 (cfm 392 196 148 98 98 (cfm 471 236	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079 24 Throw 18-27-43 10-15-30	cfm 381 191 144 95 95 (cfm 471 236 178 118 118 (cfm 549 275	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107 28 Throw 21-32-46 12-17-33	cfm 436 218 165 109 109	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 623 0.138 32 Throw 24-35-49 13-20-35	cfm 490 245 185 123 123 123 1257 157 157 157 706 353	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706 0.177 35 Throw 27-37-53 15-22-37	cfm 599 300 226 150 150 Cfm 706 353 267 177 1777 Cfm 863 432	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 9-14-22 706 .177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 863 .264 40 Throw 33-41-58 18-27-41
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP t to NC	NC Side X X & Y X Y Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X	cfm 218 109 82 55 55 cfm 235 118 89 59 cfm 314	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 214 0.035 13 Throw 12-18-35 7-10-20 5-8-15	cfm 272 136 68 68 (cfm 314 157 119 79 79 (cfm 392 196 148	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 4-6-13 14 0.035 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 392 0.055 19 Throw 15-23-39 8-12-25 7-10-17	cfm 327 164 123 82 82 (cfm 392 196 148 98 98 (cfm 471 236 178 178 178 178 178 178 178 178 178 178	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079 24 Throw 18-27-43 10-15-30 8-12-19	cfm 381 191 144 95 95 (cfm 471 1236 178 118 118 118 549 275 207	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 549 0.107 28 Throw 21-32-46 12-17-33 10-14-20	cfm 436 218 165 109 109 109 109 137 137 137 137 137 253 312 235	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 623 0.138 32 Throw 24-35-49 13-20-35 11-15-22	cfm 490 245 185 123 123 123 123 125 157 157 157 157 157 267 267 267 267 267 267 267 267 267 26	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 8-13-22 706 0.177 35 Throw 27-37-53 15-22-37 12-16-23	cfm 599 300 226 150 150 Cfm 706 353 267 1777 177 Cfm 863 432 326	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 .1177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 863 .264 40 Throw 33-41-58 18-27-41 15-18-26
12 x 12 10" Round Return -SP = Add 1 12 x 12 12" Round Return -SP = Add 1	S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2&G2	NC Side X X & Y X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Side X X & Y	cfm 218 109 82 55 55 55 cfm 235 118 89 59 cfm 314 157 119	11 Throw 10-15-29 5-8-16 4-7-13 3-5-10 235 0.020 - Throw 9-14-27 5-7-15 4-6-12 2-5-10 214 0.035 13 Throw 12-18-35 7-10-20	cfm 272 136 68 68 (Cfm 314 157 79 79 (Cfm 392 196	0.049 17 Throw 12-18-33 7-10-20 6-8-14 4-6-13 314 0.035 15 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 392 0.055 19 Throw 15-23-39 8-12-25	cfm 327 164 123 82 82 (cfm 392 196 148 98 98 (cfm 471 236	0.072 22 Throw 15-22-36 8-12-24 7-10-16 5-8-16 5-8-16 392 0.055 20 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 471 0.079 24 Throw 18-27-43 10-15-30	cfm 381 191 144 95 95 (cfm 471 236 178 118 118 (cfm 549 275	0.097 26 Throw 17-26-39 9-14-27 8-12-17 6-9-17 471 0.079 25 Throw 18-27-43 10-15-30 8-12-19 6-10-19 549 0.107 28 Throw 21-32-46 12-17-33	cfm 436 218 165 109 109 cfm 549 275 207 137 137 cfm 623 312	0.127 30 Throw 20-29-41 11-16-29 9-13-18 7-10-18 7-10-18 549 0.107 29 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 623 0.138 32 Throw 24-35-49 13-20-35	cfm 490 245 185 123 123 123 1257 157 157 157 706 353	0.161 33 Throw 22-31-44 12-18-31 10-14-19 8-12-20 628 0.140 33 Throw 24-35-50 13-20-35 11-15-22 8-13-22 706 0.177 35 Throw 27-37-53 15-22-37	Cfm 599 300 226 150 150 Ccfm 706 353 267 177 177 Ccfm 863 326 326 432 2326 216	599 .240 38 Throw 27-34-48 15-22-34 12-15-21 9-14-22 9-14-22 706 0.177 36 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 863 .264

- All pressures are in inches of water.
- Throw velocities given are for isothermal terminal velocities of 150, 100 and 50 fpm. See the section, Engineering Guidelines for additional information.
- NC values based on Octave Band 2 to 7 sound power levels minus a room absorption of 10 dB.
- Dash (-) in space denotes an NC value less than 10.
- Data obtained from tests conducted in accordance with ANSI/ASHRAE Standard 70-2006.
- Throw values given are for isothermal conditions.

Diffusers | Square and Rectangular, Induction Vanes | Performance Data

Performance Data • Round Neck (continued)
TDV • Louvered Face, Induction Vanes • Horizontal Discharge Pattern

F178

- ACCUMIT	Factors	Total cfm		320		427		534		641		748		855		863
-SP =	1.1 TP	Total Pressure		0.018	(0.032	(0.050	(0.072	(0.097	(0.127	(0.130
Add 1	L to NC	NC		5		12		18		23		27		31		31
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
15	S1	Χ	320	10-15-31	427	14-21-41	534	17-26-46	641	21-31-50	748	24-36-54	855	28-41-58	863	28-41-58
Х	S2&G2	X & Y	160	6-9-17	214	8-11-23	267	9-14-28	321	11-17-34	374	13-20-38	428	15-23-41	432	15-23-41
15	A3	X	121	4-7-14	161	6-9-18	202	8-12-20	242	9-14-22	282	11-16-24	323	12-18-25	326	13-18-26
14"		Υ	80	3-5-11	107	5-7-14	134	6-9-18	160	7-11-22	187	8-13-24	214	10-14-26	216	10-15-26
Round	A4	X & Y	80	3-5-11	107	5-7-14	134	6-9-18	160	7-11-22	187	8-13-24	214	10-14-26	216	10-15-26
Return	Factors	Total cfm		98		117		137		156		176		215		254
-SP =	1.1 TP	Total Pressure		0.048	(0.069	(0.094	(0.122		0.155	(0.232		0.324
Add 1	l to NC	NC		15		20		24		28		31		37		41
		Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
18	S1	Х	98	7-11-20	117	9-13-21	137	10-15-23	156	12-17-25	176	13-19-26	215	16-21-29	254	18-22-32
Х	S2&G2	X & Y	49	4-6-12	59	5-7-15	69	6-9-16	78	6-10-17	88	7-11-19	108	9-13-21	127	11-16-22
18	A3	X	37	3-5-9	44	4-6-9	52	5-7-10	59	5-8-11	66	6-8-12	81	7-9-13	96	8-10-14
6"		Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
Round	A4	X & Y	25	3-4-8	29	3-5-9	34	4-5-10	39	4-6-11	44	5-7-12	54	6-8-13	64	7-10-14
	Factors	Total cfm	174	,	209			244		279		314		383		453
	1.1 TP	Total Pressure	0.047		0.067		(0.092	(0.120	(0.152	(0.226	(0.317
Add 1	l to NC	NC Side	16	Throw	21 cfm	Throw	ofm	25 Throw	cfm	29 Throw	cfm	32 Throw	cfm	38 Throw	cfm	42 Throw
10	C1	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Throw
18	S1	X	174	10-15-26	209	12-18-29	244	14-21-31	279	16-23-33	314	18-25-35	383	22-27-39	453	24-30-42
X	S2&G2	X & Y	87	5-8-16	105	6-10-19	122	8-11-22	140	9-13-23	157	10-15-25	192	12-18-27	227	14-21-30
18 8 "	A3	X Y	66 44	4-7-11	79 52	5-8-13	92	6-9-14 5-7-14	105 70	7-10-15	119 79	8-11-15 6-9-16	145 96	10-12-17 8-11-17	171	11-13-18
	Λ.4		44	3-5-10 3-5-10		4-6-12	61	5-7-14		6-8-15 6-8-15	79				113	9-13-19
Round	A4	X & Y	44		52	4-6-12	61		70		19	6-9-16	96	8-11-17	113	
	Factors	Total Cfm	Ι.	218	١,	272	Ι,	327	,	381	١,	436	Ι,	490		599
	1.1 TP L to NC	Total Pressure NC	l '	0.029 11		0.045 17	۱ ۱	0.066 22	(0.089 26		0.117 30	١ ١	0.147 33).220 38
Add 1	L to INC	Side	cfm	Throw	cfm	Throw	cfm	Throw	cfm	Zo Throw	cfm	Throw	cfm	Throw	cfm	Throw
18	S1	X	218	10-15-29	272	12-18-33	327	15-22-36	381	17-26-39	436	20-29-41	490	22-31-44	599	27-34-48
Х	S2&G2	X & Y	109	5-8-16	136	7-10-20	164	8-12-24	191	9-14-27	218	11-16-29	245	12-18-31	300	15-22-34
	JZQUZ	Λαι	107	3-0-10	130	7-10-20	104	0-12-24	171							
18	Λ3	Y	82	1-7-13	103		122	7-10-16	1///				_			
18 10"	A3	X	82 55	4-7-13 3-5-10	103 68	6-8-14	123 82	7-10-16 5-8-16	144 95	8-12-17	165	9-13-18	185	10-14-19	226	12-15-21
10"		Υ	55	3-5-10	68	6-8-14 4-6-13	82	5-8-16	95	8-12-17 6-9-17	165 109	9-13-18 7-10-18	185 123	10-14-19 8-12-20	226 150	12-15-21 9-14-22
10" Round	A4	Y X & Y		3-5-10 3-5-10		6-8-14 4-6-13 4-6-13		5-8-16 5-8-16		8-12-17 6-9-17 6-9-17	165 109 109	9-13-18 7-10-18 7-10-18	185	10-14-19 8-12-20 8-12-20	226 150 150	12-15-21 9-14-22 9-14-22
10" Round Return	A4 Factors	Y X & Y Total cfm	55 55	3-5-10 3-5-10 314	68 68	6-8-14 4-6-13 4-6-13 392	82 82	5-8-16 5-8-16 471	95 95	8-12-17 6-9-17 6-9-17 549	165 109 109	9-13-18 7-10-18 7-10-18 623	185 123 123	10-14-19 8-12-20 8-12-20 706	226 150 150	12-15-21 9-14-22 9-14-22 863
10" Round Return -SP =	A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure	55 55	3-5-10 3-5-10 314 0.031	68 68	6-8-14 4-6-13 4-6-13 392 0.048	82 82	5-8-16 5-8-16 471 0.070	95 95	8-12-17 6-9-17 6-9-17 549 0.095	165 109 109	9-13-18 7-10-18 7-10-18 623 0.122	185 123 123	10-14-19 8-12-20 8-12-20 706 0.157	226 150 150	12-15-21 9-14-22 9-14-22 863).234
10" Round Return -SP =	A4 Factors	Y X & Y Total cfm Total Pressure NC	55 55	3-5-10 3-5-10 314 0.031 13	68	6-8-14 4-6-13 4-6-13 392 0.048 19	82 82	5-8-16 5-8-16 471 0.070 24	95 95	8-12-17 6-9-17 6-9-17 549 0.095 28	165 109 109	9-13-18 7-10-18 7-10-18 623 0.122 32	185 123 123	10-14-19 8-12-20 8-12-20 706 0.157 35	226 150 150	12-15-21 9-14-22 9-14-22 863 0.234 40
10" Round Return -SP = Add 1	A4 Factors 1.1 TP	Y X & Y Total cfm Total Pressure	55 55	3-5-10 3-5-10 314 0.031	68 68	6-8-14 4-6-13 4-6-13 392 0.048	82 82	5-8-16 5-8-16 471 0.070	95 95	8-12-17 6-9-17 6-9-17 549 0.095	165 109 109	9-13-18 7-10-18 7-10-18 623 0.122	185 123 123	10-14-19 8-12-20 8-12-20 706 0.157	226 150 150	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw
10" Round Return -SP =	A4 Factors 1.1 TP L to NC	Y X & Y Total cfm Total Pressure NC Side	55 55 cfm	3-5-10 3-5-10 314 0.031 13 Throw	68 68 (cfm	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw	82 82 cfm	5-8-16 5-8-16 471 0.070 24 Throw	95 95 (cfm	8-12-17 6-9-17 6-9-17 549 0.095 28 Throw	165 109 109	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw	185 123 123 cfm	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw	226 150 150 (cfm	12-15-21 9-14-22 9-14-22 863 0.234 40
10" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X	55 55 cfm 314	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35	68 68 (cfm 392	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39	82 82 cfm 471	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43	95 95 (cfm 549	8-12-17 6-9-17 6-9-17 549 0.095 28 Throw 21-32-46	165 109 109 (cfm 623	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49	185 123 123 (cfm 706	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53	226 150 150 (cfm 863	12-15-21 9-14-22 9-14-22 863).234 40 Throw 33-41-58
10" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2	Y X & Y Total cfm Total Pressure NC Side X X & Y	55 55 cfm 314 157	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20	68 68 cfm 392 196	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25	82 82 cfm 471 236	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30	95 95 (cfm 549 275	8-12-17 6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33	165 109 109 (cfm 623 312	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35	185 123 123 (cfm 706 353	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37	226 150 150 (cfm 863 432	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41
10" Round Return -SP = Add 1 18 x 18	A4 Factors 1.1 TP to NC S1 S2&G2	Y X & Y Total cfm Total Pressure NC Side X X & Y X	55 55 cfm 314 157	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15	cfm 392 196	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17	82 82 cfm 471 236 178	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19	95 95 cfm 549 275 207	8-12-17 6-9-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20	165 109 109 cfm 623 312 235	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22	185 123 123 cfm 706 353 267	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23	226 150 150 cfm 863 432 326	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26
10" Return -SP = Add 1 18 x 18 12" Round	A4 Factors 1.1 TP t to NC S1 S2&G2 A3	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y	55 55 cfm 314 157 119 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13	68 68 cfm 392 196 148 98	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19	95 95 (cfm 549 275 207 137	8-12-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21	165 109 109 cfm 623 312 235 156	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22	185 123 123 cfm 706 353 267 177	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23	226 150 150 cfm 863 432 326 216 216	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26
10" Return -SP = Add 1 18 x 18 12" Round Return	A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13	68 68 (cfm 392 196 148 98	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060	95 95 (cfm 549 275 207 137	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081	165 109 109 cfm 623 312 235 156 156	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106	185 123 123 cfm 706 353 267 177	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135	226 150 150 cfm 863 432 326 216 216	12-15-21 9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26
10" Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm	55 55 cfm 314 157 119 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12	68 68 (cfm 392 196 148 98	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 534 0.042 18	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23	95 95 (cfm 549 275 207 137	8-12-17 6-9-17 5-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27	165 109 109 cfm 623 312 235 156 156	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-5 0.106 31	185 123 123 cfm 706 353 267 177	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34	226 150 150 cfm 863 432 326 216 216	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175 0.201
10" Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total cfm Total cfm Total Pressure NC Side	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw	68 68 cfm 392 196 148 98	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw	82 82 cfm 471 236 178 118	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 641 0.060 23 Throw	95 95 (cfm 549 275 207 137	8-12-17 6-9-17 5-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw	165 109 109 cfm 623 312 235 156 156	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-5 0.106 31 Throw	185 123 123 (cfm 706 353 267 177 177	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw	226 150 150 cfm 863 432 326 216 216	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175 0.201 40 Throw
10" Return -SP = Add 1 18	A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side X X & Y X &	55 55 cfm 314 157 119 79 79 cfm 427	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41	68 68 cfm 392 196 148 98 98	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46	82 82 cfm 471 236 178 118 118	5-8-16 5-8-16 471 .0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 .0.060 23 Throw 21-31-50	95 95 95 cfm 549 275 207 137 137 cfm 748	8-12-17 6-9-17 5-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-8 0.081 27 Throw 24-36-54	165 109 109 cfm 623 312 235 156 156 cfm 855	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58	185 123 123 123 cfm 706 353 267 177 177 cfm	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61	226 150 150 (cfm 863 432 326 216 216 (cfm 1175	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175 0.201 40 Throw 38-48-68
10" Return -SP = Add 1 18	A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79 79	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23	68 68 (cfm 392 196 148 98 98 (cfm 534 267	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28	82 82 cfm 471 236 178 118 118 cfm 641 321	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34	95 95 95 cfm 549 275 207 137 137 cfm 748 374	8-12-17 6-9-17 5-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-8 0.081 27 Throw 24-36-54 13-20-38	165 109 109 cfm 623 312 235 156 156 cfm 855 428	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41	185 123 123 123 cfm 706 353 267 177 177 177 cfm 962 481	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43	226 150 150 (cfm 863 432 326 216 216 (cfm 1175 588	12-15-21 9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1175).201 40 Throw 38-48-68 21-31-48
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1	A4 Factors 1.1 TP t to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79 79 cfm 427 214	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-8-16 9-14-28 8-12-20	82 82 cfm 471 236 178 118 118 cfm 641 321 242	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-41 0.060 23 Throw 21-31-50 11-17-34 9-14-22	95 95 95 cfm 549 275 207 137 137 cfm 748 374 282	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24	165 109 109 cfm 623 312 235 156 156 cfm 855 428 323	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 855 0.106 31 Throw 28-41-58 15-23-41 12-18-25	185 123 123 123 cfm 706 353 267 177 177 cfm 962 481 363	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43	226 150 150 150 cfm 863 432 326 216 216 cfm 1175 588 444	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 177-20 0.201 40 Throw 38-48-68 21-31-48 17-21-30
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14"	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4 Factors A7 A4 Factors A7 A4 Factors A7 A4 Factors A7	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y	55 55 cfm 314 157 119 79 79 cfm 427 214	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 9-14-28 8-12-20 6-9-18	82 82 cfm 471 236 178 118 118 cfm 641 321 242	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22	95 95 95 cfm 549 275 207 137 137 cfm 748 374 282	8-12-17 6-9-17 5-9-17 5-49 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24	165 109 109 cfm 623 312 235 156 156 cfm 855 428 323 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26	185 123 123 123 cfm 706 353 267 177 177 cfm 962 481 363 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27	226 150 150 (cfm 863 432 326 216 216 (cfm 1175 588 444 294	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 177-20 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4 Factors A7 A4 Factors A7 A4 Factors A7 A4 Factors A7	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y	55 55 cfm 314 157 119 79 79 cfm 427 214	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202	6-8-14 4-6-13 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-8-16 9-14-28 8-12-20	82 82 cfm 471 236 178 118 118 cfm 641 321 242	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-41 0.060 23 Throw 21-31-50 11-17-34 9-14-22	95 95 95 cfm 549 275 207 137 137 cfm 748 374 282	8-12-17 6-9-17 5-9-17 5-49 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24	165 109 109 cfm 623 312 235 156 156 cfm 855 428 323 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26	185 123 123 123 cfm 706 353 267 177 177 cfm 962 481 363 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43	226 150 150 (cfm 863 432 326 216 216 (cfm 1175 588 444 294	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 177-20 0.201 40 Throw 38-48-68 21-31-48 17-21-30
10" Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4 Factors A4 Factors	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Y Total cfm Total ffm Total pressure NC Side X X & Y Total cfm Total ffm Total pressure NC Side X X & Y X & Y Total cfm Total pressure	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 4-27 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 6-28	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18	82 82 cfm 471 236 178 118 118 cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-10-19 6-11-17-34 9-14-22 7-11-22 837	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977	165 109 109 (cfm 623 312 235 156 (cfm 855 428 323 214 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 8-13-22 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-23 11-15-25 11-1	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 363 241 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27	226 150 150 (cfm 863 326 216 (cfm 1175 588 444 294	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 1175 0.201 40 Throw 38-48-68 21-31-48 21-31-48 21-31-48 17-21-30 13-20-30
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP =	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP The Sactors 1.1 TP The Sactors 1.1 TP The Sactors 1.1 TP	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Y Total cfm Total cfm Total Pressure NC Side X Y X & Y Total cfm Total Pressure Y X & Y X & Y X & Y Total cfm Total Pressure Total Pressure NC Side X X & Y X & Y X & Y X & Y Total cfm Total Pressure	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 5-7-14 628 0.032	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18	82 82 cfm 471 236 178 118 118 cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187	8-12-17 6-9-17 5-9-17 5-49 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077	165 109 109 (cfm 623 312 235 156 (cfm 855 428 323 214 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 1256 0.126	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 363 241 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 15-30 0.188	226 150 150 (cfm 863 326 216 (cfm 1175 588 444 294	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 12-17-26 12-17-26 12-17-26 12-17-26 1175 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP =	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors A4 Factors A4 Factors	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y X & Y X & Y X & Y X & Y X & Y Total cfm Total Pressure NC NC Side NC	55 55 cfm 314 157 119 79 79 cfm 427 214 161 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-8-16 9-14-28 8-12-20 6-9-18 6-9-18 6-98 0.039	82 82 cfm 471 236 178 118 118 cfm 641 321 242 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 7-11-22 837 0.056 24	95 95 (cfm 549 275 207 137 (cfm 748 374 282 187	8-12-17 6-9-17 549 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 8-13-24 977 0.077 28	165 109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-13-22 8-13-22 11-15-22 11-15-22 11-15-22 11-15-22 11-15-22 11-15-22 11-15-22 11-12-26	185 123 123 (cfm 706 353 267 177 177 cfm 962 481 363 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188 40	226 150 150 (cfm 863 326 216 216 (cfm 1175 588 444 294	12-15-21 9-14-22 9-14-22 863).234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 12-17-26 13-48 17-21-30 13-20-30 13-20-30 1808).262 45
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y Y Total cfm Total Pressure NC Side Side X X & Y X & Y X & Y X & Y Side Side NC Side Side Side Side Side	55 55 55 cfm 314 157 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 4-6-13 4-7 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw	68 68 (cfm 392 196 148 98 98 (cfm 202 134 134	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 698 0.039 19 Throw	82 82 cfm 471 236 178 118 118 118 124 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw	95 95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 (cfm	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-11-21 748 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28 Throw	165 109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-5 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126 35 Throw	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 241 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188 40 Throw	226 150 150 (cfm 863 432 216 216 216 (cfm 1175 588 444 294 294	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 1775 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 1808 0.262 45 Throw
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP The to NC S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2 S1 S2 S1 S2 S1 S1 S2 S1	Y X & Y Total cfm Total Pressure NC Side X X & Y X & Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y	55 55 55 cfm 314 157 119 79 79 cfm 427 214 161 107 107	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw 18-27-50	68 68 (cfm 392 196 148 98 (cfm 534 267 202 134 134	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 9-14-28 8-12-20 6-9-18 6-9-18 698 0.039 19 Throw 20-30-52	82 82 cfm 471 236 178 118 118 118 cfm 641 321 242 160 160	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw 24-35-57	95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 (cfm 977	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 8-13-24 977 0.077 28 Throw 28-41-62	165 109 109 (cfm 623 312 235 156 156 (cfm 428 323 214 214	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-50 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126 35 Throw 35-50-70	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 241 241	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188 40 Throw 43-55-77	226 150 (cfm 863 432 216 216 (cfm 1175 588 444 294 294 (cfm 1808	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 177-20 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 1808 0.262 45 Throw 49-60-84
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y	55 55 55 cfm 314 157 119 79 cfm 427 214 161 107 107 cfm 628 314	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw 18-27-50 10-15-29	68 68 (cfm 392 196 148 98 (cfm 534 267 202 134 134 (cfm 698 349	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-4 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 6-98 0.039 19 Throw 20-30-52 11-16-32	82 82 cfm 471 236 178 118 118 (cfm 641 321 242 160 160 (cfm 837 419	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw 24-35-57 13-19-39	95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 187 (cfm 977 488	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44	165 109 109 (cfm 623 312 235 156 156 (cfm 855 428 323 214 214 (cfm 1256 628	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-50 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126 35 Throw 35-50-70 19-29-50	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 241 241 (cfm 1530 765	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188 40 Throw 43-55-77 24-36-55	226 150 150 (cfm 863 432 216 216 216 (cfm 1175 588 444 294 294 (cfm 1808 904	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 1175 0.201 40 Throw 38-48-68 21-31-48 17-21-30 13-20-30 13-20-30 1808 0.262 45 Throw 49-60-84 28-42-60
10" Round Return -SP = Add 1 18	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP The to NC S1 S2&G2 S1 S2&G2 S1 S2&G2 S1 S2 S1 S2 S1 S2 S1 S1 S2 S1	Y X & Y Total cfm Total Pressure NC Side X X & Y Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y	55 55 55 cfm 314 157 119 79 79 cfm 427 214 161 107 107 cfm 628 314 237	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 4-6-13 4-6-13 6-9-18 5-7-14 5-7-14 628 0.032 16 Throw 18-27-50 10-15-29 8-12-22	68 68 (cfm 392 196 148 98 98 (cfm 534 267 202 134 134 (cfm 698 349 263	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 534 0.042 18 Throw 17-26-46 9-14-28 6-9-18 6-9-18 6-9-18 6-9-18 6-9-18 19 Throw 20-30-52 11-16-32 9-13-23	82 82 cfm 471 236 178 118 118 (cfm 641 321 160 160 cfm 837 419	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 6-10-19 6-10-19 11-17-34 9-14-22 7-11-22 7-11-22 837 0.056 24 Throw 24-35-57 13-19-39 11-16-25	95 95 (cfm 549 275 207 137 137 (cfm 748 374 282 187 187 (cfm 977 488 369	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44 12-19-27	165 109 109 (cfm 623 312 235 156 (cfm 855 428 323 214 214 (cfm 1256 628 474	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-55 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126 35 Throw 35-50-70 19-29-50 16-22-31	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 3241 241 (cfm 1530 765 578	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 11-16-27 1530 0.188 40 Throw 43-55-77 24-36-55 20-24-34	226 150 150 (cfm 863 432 216 216 (cfm 1175 588 494 294 (cfm 1808 904 683	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 11-75 0.201 40 Throw 38-48-68 21-31-48 21-31-48 21-31-48 21-31-48 21-30-30 13-20-30 13-20-30 140 15-18-26 12-17-26 11-75 12-17-26 11-75 12-17-26 11-75 13-20-30 13-20-30 13-20-30 140 13-20-30 13-20-30 140 13-20-30 140 13-20-30 140 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30 13-20-30
10" Round Return -SP = Add 1 18 x 18 12" Round Return -SP = Add 1 18 x 18 14" Round Return -SP = Add 1	A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC S1 S2&G2 A3 A4 Factors 1.1 TP to NC	Y X & Y Total cfm Total Pressure NC Side X X & Y Y X & Y Total cfm Total Pressure NC Side X X & Y Total cfm Total Pressure NC Side X X & Y	55 55 55 cfm 314 157 119 79 cfm 427 214 161 107 107 cfm 628 314	3-5-10 3-5-10 314 0.031 13 Throw 12-18-35 7-10-20 5-8-15 4-6-13 4-6-13 427 0.027 12 Throw 14-21-41 8-11-23 6-9-18 5-7-14 628 0.032 16 Throw 18-27-50 10-15-29	68 68 (cfm 392 196 148 98 (cfm 534 267 202 134 134 (cfm 698 349	6-8-14 4-6-13 392 0.048 19 Throw 15-23-39 8-12-25 7-10-17 5-8-16 5-8-16 5-8-16 5-4 0.042 18 Throw 17-26-46 9-14-28 8-12-20 6-9-18 6-9-18 6-98 0.039 19 Throw 20-30-52 11-16-32	82 82 cfm 471 236 178 118 118 (cfm 641 321 242 160 160 (cfm 837 419	5-8-16 5-8-16 471 0.070 24 Throw 18-27-43 10-15-30 8-12-19 6-10-19 6-10-19 641 0.060 23 Throw 21-31-50 11-17-34 9-14-22 7-11-22 837 0.056 24 Throw 24-35-57 13-19-39	95 95 (cfm 549 275 207 137 (cfm 748 374 282 187 187 (cfm 977 488	8-12-17 6-9-17 5-9-17 5-9-17 5-9 0.095 28 Throw 21-32-46 12-17-33 10-14-20 7-11-21 7-48 0.081 27 Throw 24-36-54 13-20-38 11-16-24 8-13-24 977 0.077 28 Throw 28-41-62 15-23-44	165 109 109 (cfm 623 312 235 156 (cfm 855 428 323 214 214 (cfm 1256 628 474	9-13-18 7-10-18 7-10-18 623 0.122 32 Throw 24-35-49 13-20-35 11-15-22 8-13-22 8-13-22 8-50 0.106 31 Throw 28-41-58 15-23-41 12-18-25 10-14-26 10-14-26 0.126 35 Throw 35-50-70 19-29-50	185 123 123 (cfm 706 353 267 177 177 (cfm 962 481 363 3241 241 (cfm 1530 765 578 383	10-14-19 8-12-20 8-12-20 706 0.157 35 Throw 27-37-53 15-22-37 12-16-23 10-14-23 962 0.135 34 Throw 31-43-61 17-26-43 14-19-27 11-16-27 11-16-27 1530 0.188 40 Throw 43-55-77 24-36-55	226 150 (cfm 863 432 216 216 216 216 216 216 216 216 216 21	12-15-21 9-14-22 9-14-22 863 0.234 40 Throw 33-41-58 18-27-41 15-18-26 12-17-26 12-17-26 177-20 100 170 170 170 170 170 170 170 170 17

- · All pressures are in inches of water.
- Throw velocities given are for isothermal terminal velocities of 150, 100 and 50 fpm. See the section, Engineering Guidelines for additional information.
- NC values based on Octave Band 2 to 7 sound power levels minus a room absorption of 10 dB.
- Dash (-) in space denotes an NC value less than 10.
- Data obtained from tests conducted in accordance with ANSI/ASHRAE Standard 70-2006.
- Throw values given are for isothermal conditions.

06-07-07

Submittal

TLF • Removable Face • Distribution and Volume Damper

Critical Environment Diffusion Products Laminar Flow Ceiling Diffusers • Steel • Perforated Face

Accessories (Optional) Check of if provided.

☐ Earthquake Tabs

Standard Finish: #26 White

General Description

- Model TLF laminar flow diffuser generates a low velocity, evenly distributed, downward moving "piston" of conditioned air.
- Installed over the operating table in a hospital operating room, Model TLF helps to protect the patient from contaminated air. The only appreciable amount of room air entrainment occurs at the boundaries of the moving air mass outside the confines of the operating table. As a result, the patient is effectively isolated from residual room air.
- Model TLF is especially effective in cooling areas with heavy, localized, internal loads, as in the computer room. The column of air delivered by the Model TLF cools the load source directly without generating high velocities in the occupied space.
- Disk type damper in neck is adjustable by rotating entire disk. Accessible after removing center plug.
- Perforated face is quickly removed by loosening 1/4 turn fasteners.

- Retainer cables prevent accidental dropping of perforated face after removal.
- Internal baffles distribute air evenly over perforated face.
- Perforated face has 3/32" diameter holes on ½" centers on 60° staggered pattern.
- Can be surfaced mounted (left side of drawing above) or laid into conventional T-bar ceiling system (right side of drawing above).
- Compatible with 1" or 1½" T-bar ceiling grids.

This submittal is meant to demonstrate general dimensions of this product. The drawings are not meant to detail every aspect of the product. Drawings are not to scale.

Titus reserves the right to make changes without written notice.

Critical Environment Diffusers

TLF, TLF-AA AND TLF-SS

www.titus-hvac.com | www.titus-energysolutions.com

7" Round Inlet	Airflow (CFM)	100	120	140	160	180	220	240	260	300
48" x 12"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
Module	NC (noise Criteria)	11	16	20	24	28	34	37	40	44
iviodule	Vertical Projection	1-2-3	1-3-4	1-4-5	2-4-5	2-5-6	4-6-7	4-7-8	5-8-9	6-9-10
60" x 12"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
Module	NC (noise Criteria)	11	16	20	24	28	34	37	40	44
Module	Vertical Projection	1-2-3	1-3-4	1-4-5	2-4-5	2-5-6	3-6-7	4-6-8	4-7-8	6-8-9
72" x 12"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
72 x 12 Module	NC (noise Criteria)	11	16	20	24	28	34	36	39	43
Module	Vertical Projection	1-2-3	1-3-4	1-4-5	2-4-5	2-5-6	3-6-7	4-6-8	4-7-8	5-8-9
24" x 24"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
Module	NC (noise Criteria)	11	16	20	24	28	34	37	40	44
Wodule	Vertical Projection	1-2-3	1-3-4	1-4-5	2-4-5	2-5-6	3-6-7	4-7-8	5-7-8	6-8-9
36" x 24"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
Module	NC (noise Criteria)	11	16	20	24	28	34	37	40	44
Module	Vertical Projection	1-2-3	1-3-4	1-4-5	2-4-5	2-4-5	3-5-6	3-6-7	4-7-8	5-8-9
48" x 24"	Total Pressure	0.035	0.050	0.068	0.090	0.114	0.170	0.200	0.235	0.313
Module	NC (noise Criteria)	11	16	20	24	28	33	36	39	43
iviodule	Vertical Projection	1-2-3	1-2-4	1-3-5	1-4-5	2-4-5	3-5-6	3-6-7	4-7-8	5-7-9

8" Round Inlet	Airflow (CFM)	100	120	140	160	180	220	240	260	300
48" x 24" Module	Total Pressure	0.020	0.027	0.038	0.050	0.062	0.090	0.113	0.130	0.175
	NC (noise Criteria)	-	-	14	18	22	28	31	33	37
	Vertical Projection	1-2-3	1-2-3	1-3-4	1-3-4	1-4-5	2-5-6	2-5-6	3-6-7	4-7-8
60" x 24" Module	Total Pressure	0.020	0.027	0.038	0.049	0.061	0.089	0.109	0.126	0.168
	NC (noise Criteria)	-	-	14	18	22	28	31	33	37
	Vertical Projection	1-2-3	1-2-3	1-3-4	1-3-4	1-4-5	2-5-6	2-5-6	3-6-7	3-7-8
72" x 24" Module	Total Pressure	0.019	0.027	0.037	0.048	0.060	0.088	0.105	0.124	0.162
	NC (noise Criteria)	-	-	14	18	22	28	31	33	37
	Vertical Projection	1-2-3	1-2-3	1-3-4	1-3-4	1-4-5	2-5-6	2-5-6	3-5-7	3-6-8

10" Round Inlet	Airflow (CFM)	215	240	<mark>265</mark>	<mark>295</mark>	320	345	400	425	515
48" x 24" Module	Total Pressure	0.043	0.053	0.065	0.080	0.094	0.110	0.147	0.166	0.244
	NC (noise Criteria)	19	22	<mark>25</mark>	28	31	33	38	40	45
	Vertical Projection	1-4-5	1-4-5	2-5-6	2-5-6	2-6-7	3-6-7	4-8-9	4-8-9	6-10-11
60" x 24" Module	Total Pressure	0.043	0.053	0.065	0.079	0.094	0.110	0.147	0.166	0.244
	NC (noise Criteria)	19	22	25	28	31	33	38	40	45
	Vertical Projection	1-4-5	1-4-5	2-5-6	2-5-6	2-6-7	3-6-7	3-7-8	4-8-9	6-10-11
72" x 24" Module	Total Pressure	0.042	0.052	0.063	0.079	0.092	0.107	0.145	0.163	0.240
	NC (noise Criteria)	19	22	25	28	31	33	38	40	45
	Vertical Projection	1-4-5	1-4-5	2-5-6	2-5-6	2-6-7	3-6-7	3-7-8	4-8-9	6-9-11

12" Round Inlet	Airflow (CFM)	215	240	265	295	320	345	400	425	515
48" x 24" Module	Total Pressure	0.023	0.029	0.035	0.043	0.051	0.059	0.080	0.090	0.132
	NC (noise Criteria)	11	15	18	22	24	27	32	34	40
	Vertical Projection	1-4-4	1-4-5	1-4-5	1-5-6	2-6-6	2-7-7	2-7-8	3-7-8	4-9-10
60" x 24" Module	Total Pressure	0.023	0.029	0.035	0.043	0.051	0.059	0.080	0.090	0.132
	NC (noise Criteria)	11	15	18	22	24	27	32	34	40
	Vertical Projection	1-4-4	1-4-5	1-4-5	1-5-6	2-6-6	2-6-7	2-7-8	3-7-8	4-8-10
72" x 24" Module	Total Pressure	0.023	0.028	0.034	0.042	0.050	0.058	0.078	0.088	0.129
	NC (noise Criteria)	11	15	18	22	24	27	32	34	40
	Vertical Projection	1-4-4	1-4-5	1-4-5	1-5-6	2-5-6	2-6-7	2-7-7	2-7-8	3-8-10

- All data based on full open damper position.
- NC values are based on a room absorption of 10 dB.
- Data obtained in accordance with ASHRAE 70-2006 and 113.
- Throw is based on 0-5° cooling with terminal velocities of 75, 50 and 30 fpm.
- Performance data does not include pressure loss of optional HEPA filter.
- See the section, Engineering Guidelines and the topic 'Procedure to Obtain Catalog Throw Data' in this catalog for throw information.
- Performance data for additional sizes not shown can be obtained by using the Titus TEAMS program.

Critical Environment Diffusion Products High Volume • Low Velocity • Radial Air Diffusion

Model: ☐ TriTec • Steel

☐ TriTec-AL • Aluminum Backpan • 304 Stainless Steel Face

☐ TriTec-SS • 304 Stainless Steel

Submittal CED-TriTec 2-28-13

Standard Finish: For steel and aluminum products

#26 White

Standard Finish: For stainless steel products

#04 Mill

Optional Finish

General Description

- TriTec hemispherical face drops below the ceiling 5/8".
- Removable face for sanitizing, (no special tool required to remove the face).
- Available in Steel, 304 Stainless Steel, and Aluminum with 304 Stainless Steel face.
- Available in 24" x 24" and 48" x 24" module sizes.
- Low velocity hemispherical (2-way) pattern or one-way pattern available.
- Factory supplied plenum with every unit.
- Standard unit lays into standard T-Bar ceiling. Optional TRM/TRMS mounting frame available for surface mounting.
- · Simple to install and maintain.

- · Great for use in fume hood areas.
- · Earthquake tabs supplied as standard.
- · Safety chain is standard.
- 51% free area perforated face matches industry standard perforated diffuser's appearance.
- 22 gauge backpan.

PERFORMANCE DATA

Critical Environment Diffusers

TRITEC, TRITEC-AL AND TRITEC-SS

Module Size					Horiz	ontal S	pread	Vertical Throw (ft)								
and		2-Way	Pattern	1	(ft)		5	Deg ∆	T	10	Deg /	\T	T 15 Deg ∆T		ΔT	
Inlet Size	cfm	Ps	Pt	Nc	1	00-75-5	50	10	00-75-5	50	10	00-75-5	50	10	00-75-5	50
24" X 24" 8" Inlet	250 300 400 500	0.055 0.080 0.142 0.222	0.224	25 29 37 42	1 2 3 5	2 3 5 6	5 6 7 8	1 1 3 3	2 3 3 4	3 4 5 5	1 1 2 3	2 2 4 5	3 4 5 7	1 2 3 4	2 3 5 6	4 5 7 8
24" X 24" 10" Inlet	250 300 475 600	0.037 0.093 0.148	0.140 0.224	<20 20 31 37	1 1 3 4	1 2 5 6	3 4 7 9	0 1 1 2	1 1 3 4	2 2 6 8	0 1 2 3	1 1 3 5	2 3 6 8	1 1 2 3	1 1 4 6	2 3 7 9
24" X 48" 10" Inlet	375 500 700 900	0.097 0.190 0.313	0.483	<20 26 39 48	3 4 6 8	4 6 8 10	6 9 10 12	0 1 1 2	1 1 2 4	1 3 5 7	1 1 2 3	1 2 4 5	2 4 6 8	1 1 2 3	1 2 4 6	2 4 7 9
24" X 48" 12" Inlet	500 650 750 1000	0.054 0.092 0.122 0.218	0.135 0.179	20 24 34 44	1 2 2 4	2 3 4 7	4 7 9 11	1 1 1 2	1 2 2 4	2 4 5 6	1 1 2 3	1 2 3 5	3 5 6 8	1 2 2 4	2 3 4 6	4 6 7 9
Module Size					Horiz	ontal S	pread	Vertical Throw (ft)								
and		1-Way			1	(ft)	-0		Deg ∆			Deg /			Deg Z	
24" X 24" 8" Inlet	250 325 400 450	Ps 0.055 0.094 0.142 0.179	0.148 0.224 0.283	<20 29 35 38	1 2 3 3	00-75-5 2 3 3 4	3 4 4 4	0 0 1 1	00-75-5 0 1 1 1	1 2 3 3	1 1 1 2 2	00-75-5 1 2 3 3	2 4 6 9	1 1 2 3	00-75-5 1 2 4 5	3 5 8 9
24" X 24" 10" Inlet	250 350 450 550	0.121	0.075 0.123 0.184	<20 22 28 34	1 3 4 4	2 4 5 6	4 6 7 8	1 1 2 3	1 2 4 5	3 5 6 7	1 2 3 4	1 3 5 6	3 6 7 9	2 4 6 7	3 6 8 9	7 9 9
24" X 48" 10" Inlet	500 625 750 900	0.143 0.206 0.297	0.144 0.225 0.324 0.467	24 32 39 44	1 2 2 3	2 2 3 4	3 4 4 6	1 2 2 4	2 3 4 5	4 5 6 8	1 2 2 4	2 3 4 7	4 6 7 9	3 5 7 8	6 8 9 9	9 9 9
24" X 48" 12" Inlet	500 650 750 1000	0.051 0.086 0.114 0.203	0.171	<20 25 31 42	1 2 3 3	2 3 3 5	3 4 5 7	2 4 5 7	4 6 7 9	7 9 9 9	4 6 6 8	6 7 8 9	8 9 9	4 6 6 8	6 7 8 9	8 9 9

- Spread is the maximum width of the isovel at the indicated terminal velocity.
- Vertical throw is the furthest distance below the ceiling where the indicated terminal velocity can be measured.
- Tests were conducted in a 16 x 16-foot room, with a 9-foot ceiling, low side wall returns, in accordance with ASHRAE Standard 113, in several planes.

2-WAY PATTERN

- Low emissivity heaters were used to maintain loads, and were set to match the supply air conditions. The room was free of obstructions during the tests.
- Sound and pressure drop tests were conducted in accordance with ASHRAE.
- Standard 70-2006 and ANSI S1.31 Procedures.

1-WAY PATTERN

Submittal

G-350F-1.0

10-1-10

- □ 350FL
- 35° Deflection
- Long Blades
- ¾" Blades Spacing

- 350FS
- 35° Deflection
- Short Blades
- ¾" Blades Spacing

Louvered Return Grilles • Aluminum

Fastenings

Mounting Frames

Accessories (Optional) Check 🗹 if provided.

Neck mounted opposed blade
damper (galvanized steel)

IS • Insect Screen (1/16" square mesh – galvanized steel)

DS • Debris Screen (¼" square mesh – galvanized steel)

Other:	

Standard Finish: #26 White

7		
L	Other Finish:	
п	Omer rinish.	

General Description -

- Available with louvers vertical or horizontal.
- #8 x 11/4" Ig. Phillips flat head sheet metal screws painted white.
- Optional opposed blade damper has screwdriver adjustment accessible through face of grille.
- Insect screen & debris screen are not available with damper option
- Material is Aluminum.
- All dimensions are ± 1/16".

Optional Border Types Available

Border Type 2, 3, 4, NT

Accessories & Options
 Check if provided.

AG-15 • Neck mounted opposed blade damper (galvanized steel)

IS • Insect Screen (1/16" square mesh – galvanized steel)

DS • Debris Screen (1/4" square mesh – galvanized steel)

☐ EQT • Earthquake tabs

Other: _____

Standard Finish: #26 White

Optional finish:

PERFORMANCE DATA

350R, 350F AND 350R-SS PERFORMANCE BASED ON NOMINAL SIZES SHOWN IN BOLD.

	NC-20												
Nominal Duct Size (in.)	Nominal Duct Area (ft²)	Core Area (ft ²)	Core Velocity Velocity Pressure Neg. Static Pressure	100 0.001 0.002	200 0.002 0.008	300 0.006 0.018	400 0.010 0.032	500 0.016 0.051	600 0.022 0.073	700 0.031 0.099	800 0.040 0.130	900 0.050 0.164	
6x6	0.25	0.19	Airflow, cfm NC	19 -	38 -	57 -	76 -	95 -	114 13	133 19	152 25	171 29	
8x6	0.33	0.26	Airflow, cfm NC	26	52 -	78 -	104	130	156 15	182 20	208 26	234 30	− NC-30
10x6	0.42	0.34	Airflow, cfm NC	34	68	102	136	170	204 16	238 21	272 28	306 32	
8x8	0.44	0.37	Airflow, cfm NC	37	74 -	111	148	185	222 16	259 22	296 28	333 32	
12x6	0.5	0.41	Airflow, cfm NC	41	82	123	164	205	246 17	287 22	328 30	369 34	
14x6	0.58	0.48	Airflow, cfm NC	48 -	96 -	144	192 -	240	288 18	336 24	384 30	432 34	
16x6 12x8	0.67	0.57	Airflow, cfm NC	57 -	114	171 -	228	285 10	342 19	399 25	456 30	513 35	
10x10	0.69	0.59	Airflow, cfm NC	59 -	118	177 -	236	295 10	354 19	413 25	472 31	531 35	
18x6	0.75	0.63	Airflow, cfm NC	63 -	126	189	252	315 10	378 19	441 25	504 32	567 35	
20x6 12x10	0.83	0.72	Airflow, cfm NC	72 -	144 -	216	288	360 11	432 19	504 25	576 30	648 35	
22x6	0.92	0.77	Airflow, cfm NC	77 -	154 -	231	308	385 11	462 19	539 25	616 30	693 35	
24x6 12x12	1	0.88	Airflow, cfm NC	88	176 -	264 -	352 -	440 11	528 19	616 25	704 30	792 35	
30x6 18x10	1.25	1.11	Airflow, cfm NC	111	222	333	444	555 12	666 20	777 26	888 32	999 35	
14x14	1.36	1.22	Airflow, cfm NC	122 -	244	366 -	488	610 12	732 20	854 27	976 32	1098 35	
36x6 18x12	1.5	1.35	Airflow, cfm NC	135 -	270	405 -	540 -	675 13	810 20	945 27	1080 32	1215 35	
22x10	1.53	1.37	Airflow, cfm NC	137	274	411 -	548 -	685 13	822 20	959 27	1096 32	1233 36	
30x8 24x10	1.67	1.49	Airflow, cfm NC	149 -	298	447 -	596 -	745 14	894 21	1043 27	1192 33	1341 37	
42x6 18x14	1.75	1.59	Airflow, cfm NC	159 -	318	477 -	636	795 14	954 21	1113 27	1272 33	1431 37	
16x16	1.78	1.62	Airflow, cfm NC	162 -	324	486 -	648	810 14	972 21	1134 27	1296 33	1458 37	
24x12 18x16	2	1.82	Airflow, cfm NC	182 -	364	546 -	728 -	910 14	1092 21	1274 28	1456 33	1638 38	
18x18	2.25	2.07	Airflow, cfm NC	207 -	414	621 -	828	1035 14	1242 21	1449 28	1656 33	1863 38	
24x14	2.33	2.14	Airflow, cfm NC	214 -	428 -	642 -	856 -	1070 14	1284 22	1498 28	1712 33	1926 38	
30x12	2.5	2.29	Airflow, cfm NC	229 -	458 -	687 -	916 -	1145 15	1374 22	1603 28	1832 33	2061 38	
24x16	2.67	2.46	Airflow, cfm NC	246 -	492	738 -	984	1230 15	1476 22	1722 29	1968 34	2214 39	
20x20	2.78	2.57	Airflow, cfm NC	257 -	514 -	771 -	1028	1285 16	1542 23	1799 29	2056 34	2313 39	
36x12	3	2.75	Airflow, cfm NC	275 -	550 -	825 -	1100	1375 16	1650 23	1925 29	2200 34	2475 39	NC-40
30x16 24x20	3.33	3.11	Airflow, cfm NC	311	622	933	1244	1555 17	1866 24	2177 30	2488 35	2799 40	40
22x22	3.36	3.14	Airflow, cfm NC	314	628	942	1256	1570 17	1884 24	2198 30	2512 35	2826 40	
42x12 36x14	3.5	3.22	Airflow, cfm NC	322 -	644	966	1288	1610 17	1932 24	2254 30	2576 36	2898 40	
24x22	3.67	3.43	Airflow, cfm NC	343	686	1029	1372	1715 17	2058 24	2401 30	2744 36	3087 40	
30x18	3.75	3.5	Airflow, cfm NC	350 -	700	1050	1400	1750 17	2100 24	2450 30	2800 36	3150 40	

• Static pressures are negative, in inches of water, measured per ANSI/ASHRAE Standard 70-2006.

• NC based on room absorption of 10 dB, re 10⁻¹² watts, measured per ANSI/ASHRAE Standard 70-2006.

APPENDIX D

ELECTRICAL

PREMIUM STATIC TROFFER

STATIC

RIE Ш S

> Ω 0

Ш Δ \succ () < Ō

SPECIFICATIONS

- Housing 22-gauge die-formed C.R.S.
- Door Frame .050" thick extruded aluminum, flat or regress, with mitered corners.
- Shielding #12 pattern, .125" acrylic overlay standard-other patterns and thicknesses available.
- Finish 92% minimum average reflective white polyester powder coat bonded to phosphate-free, multi-stage pretreated metal.
- Electrical Electronic ballast standard, instant start T8, program start T5, rated Class P.
- Labels UL/CUL listed as recessed fluorescent luminaire suitable for dry or damp locations. Available for wet locations-consult factory.
- Mounting NEMA Type "G" standard. NEMA Type "F" available.

FEATURES

- Fully-enclosed spring-loaded cam latches allow years of hassle-free maintenance.
- T-slot steel hinge ensures positive retention when door is opened.
- T-slot steel hinge allows reversible hinging and latching.
- 5-3/4" deep housing with raised ballast wireway eliminates lens shadowing.
- Deep reinforcement ribs provide added strength.
- Optional anti-microbial powder coating available to prevent the spread of dangerous micro-organisms and suppress the growth of mold and bacteria.
- Fully-gasketed door minimizes contaminants.
- Ballast secured by two captive bolts and nuts to ensure a tight, reliable fit for maximum heat dissipation.
- All parts painted after fabrication to facilitate installation, increase efficiency, and inhibit corrosion.
- This fixture is proudly made in the USA.

ORDERING INFORMATION

Submittal

	CEILING SERIES TYPE	FIXT. NOM. NOM. STYLE W. L.	TOTAL WATTAGE/ LAMPS TYPE	FRAME TYPE	SHIELDING	OPTIONS	BALLAST	VOLTAGE
EXAMPLE:	EP G -	- S 2 2	- 2 32U	- R	A12125 -	OPTIONS -	- EB2 -	120
LAMP WATTAGE/TYPE							ОРТ	IONS

2', 14-watt T5

2', 17-watt T8

spacing

2', 24-watt T5HO

2', U-bent, 31-watt T8, 1-5/8" leg

2', 40-watt long twin tube

2', U-bent, 32-watt T8, 6" leg spacing

14T5S

24T5H

31UN

32U

40TT

17

	EXAMPLE: EP G - 5 2
SERIES	
EP	Premium Static Troffer (No air handling)
CEILIN	G TYPE
G	NEMA Type "G"
F	NEMA Type "F"
FIXTUR	RE STYLE
S	Full door frame, no reveal
NOMI	NAL WIDTH
2	2'
NOMI	NAL LENGTH
2	2'
TOTAL	LAMPS
2, 3, o	r 4
Note: Fo	or more options/accessories, ballast

combinations, and product details, please

consult factory.

DOOR FE	RAME TYPE				
F	White flat aluminum				
R	White regress aluminum				
FB	Black flat aluminum				
RB	Black regress aluminum				
SHIELDIN	1G				
A12125	#12 pattern acrylic, .125" thick				
A19156	#19 pattern acrylic, .156" thick				
PC1SS	Nominal 1/2"x1/2"x1/2" silver polystyrene				
PC2SS	Nominal 1-1/2"x1-1/2"x1" silver polystyrene				

OPTIONS			
DG/MYLA	R Double	gasket (flat	aluminum door only
TG/MYLAF	₹ Triple g	asket (flat al	uminum door only)
WET	under c	d suitable fo overed ceil minum doo	
AMW	Anti-mi	crobial whit	e finish
		ctronic ball	
		ctronic ball	
EB4	4-lamp ele	ctronic ball	ast
EB2/2	(2) 2-lamp	electronic l	pallasts
··			
VOLTAGE			
120	120V	UNV	120-277V
277	2771/	2.47	2.47\/

Williams Catalog #EPG-S22-232U-RA12125-EB2-120 Test Report #8534.0, Dated 11/15/95 Lamp Type: FB032/835/6

Lamp Quantity: 2

CANDLEPOWER DISTRIBUTION

VERT.	HORI	ZONTAL	angle	ZONAL
ANG.	0	45	90	LUMENS
0	1986.	1986.	1986.	
5	1989.	1986.	1980.	189.6
15	1922.	1940.	1958.	550.7
25	1760.	1824.	1879.	844.3
35	1490.	1614.	1686.	1008.3
45	1103.	1226.	1339.	948.3
55	683.	770.	868.	697.9
65	361.	326.	422.	354.0
75	226.	172.	244.	210.5
85	80.	84.	91.	91.2
90	0	0	0	

LUMEN SUMMARY

ZONE	LUMENS	% LAMP	% FIXTURE
0 - 30	1585.	26.4	32.4
0 - 40	2593.	43.2	53.0
0 - 60	4239.	70.7	86.6
0 - 90	4895.	81.6	100.0
90 - 120	Ο.	Ο.	Ο.
90 - 130	Ο.	Ο.	Ο.
90 - 150	Ο.	Ο.	Ο.
90 - 180	Ο.	Ο.	Ο.
Total Luminaire			
0-180	4895.	81.6	100.0

ZONAL CAVITY COEFFICIENTS

EFFECTIVE FLOOR CAVITY REFL. = .20

CEILING	.80			.70			.50		
WALL RCR	.70	.50	.30	.70	.50	.30	.50	.30	.10
0	.97	.97	.97	.95	.95	.95	.91	.91	.91
1	.90	.87	.84	.88	.85	.82	.82	.79	.77
2	.83	.78	.73	.81	.76	.72	.73	.70	.66
3	.77	.70	.64	.75	.68	.63	.66	.62	.58
4	.71	.63	.56	.69	.62	.56	.60	.54	.50
5	.66	.56	.49	.64	.55	49	.53	.48	.44
6	.61	.51	.44	.59	.50	.43	.48	.43	.39
7	.56	.46	.39	.55	.45	.39	.44	.38	.34
8	.52	.41	.34	.50	.40	.34	.39	.34	.30
9	.47	.37	.30	.46	.36	.30	.35	.30	.26
10	.44	.33	.27	.43	.33	.27	.32	.27	.23

TOTAL LUMINAIRE
OPTICAL EFFICIENCY = 81.6 %

SPACING CRITERIA: ACROSS= 1.3 ALONG= 1.2

BACK VIEW

CROSS SECTION

NEMA TYPE "F" INSTALLATION

MAXIMUM RECOMMENDED CEILING OPENING IS 24-3/8" X 24-3/8"

H.E. WILLIAMS, INC

FEATURES & SPECIFICATIONS

INTENDED USE

Ideal for a wide variety of low- to medium-height ceiling applications including commercial, retail and hospitality spaces where a baffled fixture is required.

OPTICAL SYSTEM

Aluminum full reflectors are optically designed to maximize lumen output and to provide superior glare control. The black or white baffled reflectors have a semi-specular upper finish with a white painted flange standard.

MECHANICAL SYSTEM

Utilizes an extruded socket housing that attaches to the reflector via key hole mount, which provides superior heat dissipation and extended lamp life. Socket housing also adjusts to accommodate varying lamp lengths.

Heavy gauge die formed galvanized steel mounting frame. Attached to frame are vertically adjustable mounting brackets for use with C channels, ½" steel conduit or 16 gauge flat bar hangers included, standard. Frames equipped with galvanized junction box UL Listed for through wire applications. Junction boxes equipped with (2) ¾" and (4) ½" conduit knockouts with pryout slots and removable access doors.

Retaining clips packed with reflector for installation on rough-in.

Maximum 1-1/2" ceiling thickness.

ELECTRICAL SYSTEM

Durable medium-base porcelain socket with nickel-plated copper alloy screw shell and contact. Integral thermal protector provides protection against improper use of insulation materials.

Rated for No. 12 AWG conductor thru-branch wiring. Mimimum 90° supply wire. Ground wire provided.

LISTING

Fixtures are UL Listed for thru-branch wiring, Non-IC recessed mounting, damp location, and to U.S. and Canadian Safety Standards.

Notes Type FIXTURE TYPE D1

Incandescent Downlighting

8" LP8N

BAFFLE

Vertical - A19, A23, PS25, PAR38 or BR40

Specifications

Max. Height: 12-3/8 (31.4) Ceiling Opening: 8-3/4 (22.2) Overlap Trim: 9-1/2 (24.1)

Length: 15 (38.1) Width: 12-1/4 (31.1)

All dimensions are inches (centimeters)

ORDERING INFORMATION

For shortest lead times, configure product using **standard options (shown in bold)**.

Example: LP8N 8B3

or to 120V). LBH Less Barhangers

NOTES:

- Refer to label included with reflector for lamp type and maximum wattage availability.
- 2 White painted flange standard.

Lamp	Max. Wattages
Max.	Lamp
wattage	type
200W	А
200W	PS25
250W	Par38
250W	BR4 0

Accessories

Order as separate catalog number

SCA8 Sloped ceiling adaptor. Degree of slope must be specified (10D, 15D, 20D, 25D, 30D) Ex: SCA8 10D.

CTE8 Ceiling thickness extender is used when ceiling thickness is greater than 1-1/2 (3.8). Maximum thickness 2 (5.1).

Downlighting and Track Sheet #: LP8N-BAFFLE

8" LP8N Vertical - A19, A23, PS25, PAR38 or BR40, Baffle

Distribution Curve	Distribution Data	Output Data	Coefficient of Utilization	Illuminance Data at 30" Above Floor for
				a Single Luminaire

LP8N 8B3, (1) 200W A23 lamp, .87 s/mh, 3930 rated lumens, test no. LTL9955

90	From 0° cp.	Zone Lumens %lamp	rf rc · rw 5	80% 50% 30%	209 709 50%		<u>%</u> 30%		Initial fo	50% Beam angle 43.2°	
1280	5° 3037 15° 2525	0°-30° 1699 43.2 0°-40° 2082 53.0	1.	.66 .66 .62 .60 .58 .55	.64 .60 .57	.64 .61 .59 .58 .55 .55	.61 .57	Mount height	Initial fc at beam center	fc at Beam beam diameter edge	fc at Beam beam diameter edge
1920	25° 1592 35° 593 45° 99 55° 5 65° 3	0°-60° 2169 55.2 0°-90° 2175 55.3 90°-180° 0 0.0	3 . 4 .	.54 .51 .51 .48	.57 .53 .50 .47	.51 .52 .47 .49	.53 .50 .47	8' 10'	103.0 55.4	4.4' 51.5 5.9' 27.7	7.8' 10.3 10.6' 5.5
2560	55° 5 65° 3 75° 2	0°-180° 2175 55.3* * Efficiency	6 .	.48 .45 .45 .42 .43 .39	.45 .42	.44 .46 .42 .44 .39 .42	.44 .41 .39	12' 14'	34.5 23.6	7.5' 17.3 9.1' 11.8	13.4' 3.5 16.2' 2.4
J200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	85° 1 90° 0	Efficiency	ğ .	.40 .37 .38 .35 .36 .33	.40 .38 .36	.37 .39 .35 .38 .33 .36	.37 .35 .33	16'	17.1	10.7' 8.5	19.1' 1.7

COMPACT FLUORESCENT INDICATOR LIGHT

SUBMITTAL:

JOB:

FIXTURE TYPE E1&E2 TYPE:

VOLTAGE:

PL-COPY - SF - (2) 13WPL - OPTIONS - EB2 - 120

SERIES MESSAGE NUMBER

▼ NUMBER

WATTAGE/

OPTIONS

BALLAST

VOLTAGE

FEATURES

- ► Available with choice of message—consult factory for custom orders.
- ► Red on white lettering standard—consult factory for custom colors.
- ► Available single-faced or double-faced.
- ► Universal mount canopy included for easy installation on wall or ceiling.
- ► This fixture is proudly made in the USA.

USA

ORDERING INFORMATION

SERIES

PL Compact Fluorescent Indicator Light

MESSAGE COPY

Consult factory for custom message.

ARA Area of Rescue Assistance

Beam On RΩ **CLOS** Closed DIU Darkroom in Use DR Darkroom 0CCOccupied **OTA** On the Air

OPE. Open RIU Room in Use XIU X-Ray in Use

NUMBER OF SIDES

SF Single face DF Double face

LAMP OPTIONS

# OF LAMPS	WATTAGE/TYPE
(2)	13WPL

OPTIONS

Consult factory for custom color.

BALLAST TYPE

EB2 2-lamp electronic ballast

VOLTAGE (Must specify)

120 120V 277 277V

SPECIFICATIONS

Housing - Extruded aluminum.

Housing Finish – Textured matte white polyester TGIC powder coat bonded to phosphate-free, multistage pretreated metal. Electrical - Electronic ballast standard with compact fluorescent lamps. Prewired at factory for easy field installation. Must specify voltage (120V or 277V). **Mounting** – Surface

mount on wall or ceiling with universal canopy. **Labels** – UL/CUL listed for dry or damp locations.

FIXTURE TYPE X

LE Series

Special Wording Option

Architectural Recessed-Mounted LED Edge-Lit Exit Sign

FEATURES

Application

The LE Series provides bright, even letter illumination in an energysaving LED edge-lit exit sign configuration. AC or Emergency operation with optional Spectron® self-test/self-diagnostic circuitry. Special Wording ("SW") option allows customizing the stencil field to convey important information.

Construction

Water-clear injection-molded acrylic EXIT plaque is available with clear, white or mirror backgrounds. High strength extruded aluminum trim available in six finishes. Exit face design in single or double face with red or green letters. Custom printed directional chevron arrows. Standard EXIT stencil with 6" letters and 34" stroke; 8" letters for New York City requirements available as an option. Rough-in kit: galvanized steel, .036 (20 Ga.) housing, .060 (16 Ga.) mounting bars.

Installation

Universal rough-in box accommodates recessed installation of all models in wall, ceiling or end-mount applications. All mounting hardware is fully concealed.

Illumination

Exit face illumination is provided by energy saving, long life red or green. LEDs. Exceeds UL 924 requirements for brightness and uniformity. 10 year LED life.

Compliances

UL 924 Listed

NFPA 70

NFPA 101

Warranty

AC models: 5 years full.

Emergency models: 5 years on unit and electronics. Battery: 1 year full,

Spectron-equipped models: 5 years on unit and electronics, lifetime warranty on battery.

ORDERING GUIDE S R Mounting Letter Color Directional Model Faces Arrows R - Red C - Ceiling mount S - Single

W- Wall mount E - End mount

D- Double* Not for use with wall mounted models

G - Green

X - No arrows EXIT Right arrow* EXIT>

Left arrow* <EXIT Double arrows <EXIT>

L/R arrows* <EXIT/EXIT>

Not for use with double face models. Use "C" L/R arrow designator.

Double face models only. Provides reversible right or left arrow indicator.

E

Operation A - AC only

N - Satin Aluminum

W-White C - Chrome B - Black Satin Brass Z - Dark Bronze

N

Trim/Housing

Finish

E - Emergency

Diagnostic

Blank - None section Spectron self-testing/ self-diagnostic electronics*

Options

See "Options"

* For use with emergency models only

OPTIONS

-2C 2-circuit operation 2,5

-FAP Fire alarm panel interface 3,5,6

Flasher module 1.6 -FM

Audible flasher module 1,6 -AF

-DC Remote DC operation 2,4,5 -24K 220-240VAC, 60Hz, operation 9

-XK Recessed mount exit sign less rough-in kit 79

-W White plague background

Mirror-plaque background 8 -M

8 inch letter plaque (red letters only) 10,11 -81

-SW See available special wording choices on page 3 12,13,14

1 For use with emergency models only.

² For use with AC models only.

3 Operates with 24-volt AC or DC fire alarm panels.

⁴ For emergency illumination of sign from remote 6-24VDC power sources,

5 -DC option may not be specified with -2C or -FAP options.

6 -AF, -FM and -FAP options may not be specified together.

7 Allows ordering of rough-in kit separately for recessed mount (LE) models. See "Accessories".

8 For use with single face models only. Standard on double face models.

9 Rough-in kit may not be ordered separately on models specified with -24K option.

10 LE exit models with 8" plagues registered under NY-BEC Calendar number 42135

ACCESSORIES (order separately)

Universal rough-in kit

URK2C Universal 2-circuit rough-in kit a,b,c

a For use with AC models only.

b Rough-in kit may not be ordered separately on models specified with -24K option.

^C Must be ordered in conjunction with -2C option on exit sign

To Order Rough-In Kit Separately

To order rough-in kit only for field installation, add "-XK" option suffix to exit model number and order "URK" or "URK2C" kit separately.

for use in New York City.

11 Single face LE exit signs specified with the -8L option are supplied without backgrounds. Double face models specified with the -8L option are supplied with mirror backgrounds.

12 Specify special wording code from page 3 when ordering. Example: SW41

13 Special wording option not available with 8" letter plaque.

14 Some special wording signs not available with directional arrows.

Hubbell Lighting, Inc.

LE Series

Architectural Recessed-Mounted LED Edge-Lit Exit Sign

SPECIFICATIONS

Electronics

Available with AC, emergency and Spectron® self-test/self-diagnostic electronics option. Emergency and self-diagnostic models equipped with isolation transformer and fully automatic constant current solid state charger with sealed maintenance-free nickel-cadmium battery. All emergency models with 90-minute run-time. All components mounted inside housing. Includes test switch and AC-on indicator. Transient/surge protection, low voltage disconnect and AC lock-out features included. Battery re-charge within UL time standards. Includes pre-stripped AC input pigtail leads.

Power Consumption (120/277VAC)

	Single Face	Double Face
Red AC Only Models:	2.2 watts	3.4 watts
Green AC Only Models:	2.5 watts	4.0 watts
Red Emergency Models:	3.3 watts	4.5 watts
Green Emergency Models:	3.6 watts	5.0 watts

^{*}Wattage figures include LED lamps, transformer and electronics power requirements.

Power Factor, Average: .8 (lagging)

Battery Type: Maintenance-free sealed nickel cadmium battery

AC Input: 120/277VAC, 60 Hz. (all models)

Operating Temperature Range: 20°C to 30°C (68°F to 86°F)

DIMENSIONS

LE Series

Architectural Recessed-Mounted LED Edge-Lit Exit Sign

LE Series architectural recessed LED edge-lit exit signs feature an option for standard or custom special-wording. The images below represent standard special-worded signs available for the LE Series. The artwork and silk-screening for the standard signs shown below were previously developed therefore pricing for these special-worded signs do not incur a setup charge.

If your special-worded requirements do not appear on this page, please contact the factory to request your custom special-wording sign. Custom special wording signs incur a one time set-up charge for each development.

STANDARD SPECIAL WORDING SIGNS WITH DIRECTIONAL ARROWS

STANDARD SPECIAL WORDING SIGNS WITHOUT DIRECTIONAL ARROWS

APPENDIX E

PLUMBING

ROXALYN™ WALL-HUNG LAVATORY

- Wall-hung sink
- · Vitreous china
- · Front overflow
- Faucet ledge Shown with 7401.172H Amarilis Heritage faucet with Wrist Blade handles (not included)
- Designed for off-wall installation with 2" clearance from wall

Faucet holes on 203mm (8") centers:							
☐ 0194.019 For exposed bracket support							
☐ 0194.076 For concealed arms support							
Faucet holes on 102mm (4") centers (Illus.): 1 0195.016 For exposed bracket support 1 0195.073 For concealed arms support							
Single faucet hole on right:							
■ 0194.035 For exposed bracket support							

SEE REVERSE FOR ROUGHING-IN DIMENSIONS

Single center faucet hole:

☐ 0194.225 For exposed bracket support

☐ 0194.092 For concealed arms support

☐ 0194.043 For concealed arms support

Nominal Dimensions:

508 x 457mm (20" x 18")

Bowl sizes:

362mm (14-1/4") wide 273mm (10-3/4") front to back 178mm (7") deep

Compliance Certifications - Meets or Exceeds the Following Specifications:

• ASME A112.19.2 for Vitreous China Fixture

	eci	

- ☐ Color: ☐ White ☐ Bone ☐ Silver
- ☐ Faucet*:
- Faucet Finish:
- Supplies:
- ☐ 1-1/4" Trap:
- Nipple:
- ☐ Bracket Support (if required):
 - ☐ 485742-600: 381mm (15") painted bracket
- ☐ Concealed Arms Support (by others):

M13

^{*} See faucet section for additional models available

ROXALYNTM WALL-HUNG LAVATORY VITREOUS CHINA

0194.019 EXPOSED BRACKET SUPPORT VARIATIONS

0194.076 CONCEALED ARMS SUPPORT VARIATIONS

0195.016

0195.073

IMPORTANT: Dimensions of fixtures are nominal and may vary within the range of tolerances established by ANSI Standard A112.19.2. These measurements are subject to change or cancellation. No responsibility is assumed for use of superseded or voided pages.

NOTES: \star DIMENSIONS SHOWN FOR LOCATION OF SUPPLIES AND "P" TRAP

ARE SUGGESTED.
SHOWN WITH CENTERSET FTG. OR COMB. FTG., FLEX SUPPLIES, POP-UP DRAIN & 1-1/4" O.D. "P" TRAP.
FITTINGS NOT INCLUDED AND MUST BE ORDERED SEPARATELY.

FITTINGS NOT INCLUDED AND MUST BE ORDERED SEPARATELY. PROVIDE SUITABLE REINFORCEMENT FOR ALL WALL SUPPORTS. CONCEALED ARMS SUPPORT & EXPOSED BRACKET SUPPORT TO BE FURNISHED BY OTHERS.

ROXALYNTM WALL-HUNG LAVATORY VITREOUS CHINA

0194.225 EXPOSED BRACKET SUPPORT VARIATION

0194.092 CONCEALED ARMS SUPPORT VARIATION

NOTES

* DIMENSIONS SHOWN FOR LOCATION OF SUPPLIES AND "P" TRAP ARE SUGGESTED.

PROVIDE SUITABLE REINFORCEMENT FOR ALL WALL SUPPORTS.
CONCEALED ARMS SUPPORT & EXPOSED BRACKET SUPPORT TO BE FURNISHED BY OTHERS.

IMPORTANT: Dimensions of fixtures are nominal and may vary within the range of tolerances established by ANSI Standard A112.19.2. These measurements are subject to change or cancellation. No responsibility is assumed for use of superseded or voided pages.

MONTERREY™

Style That Works Better

WITH LAMINAR FLOW IN BASE OF SPOUT TWO-HANDLE 8" WIDESPREAD LAVATORY FAUCET WITH RIGID/SWIVEL GOOSENECK SPOUT

MODEL NUMBER:

☐ 6540.180 Widespread Lavatory

1.5 gpm Pressure Compensating Laminar Flow device in base of spout. Field-Convertible rigid/swivel gooseneck spout. Plain spout end. Vandal-Resistant Wrist Blade Handles. Less drain and pop-up hole.

GENERAL DESCRIPTION:

Durable cast brass construction. Cast brass valve bodies with 8" rigid copper connection with compression fittings. 1/2" male threaded inlet shanks with brass coupling nuts. 1/4 turn ceramic disc valve cartridges. Field-Convertible rigid/swivel spout. Plain spout end. Vandal-Resistant Wrist Blade handles with blue & red color indexes. 1.5 gpm/5.7L/min. maximum flow rate.

PRODUCT FEATURES:

Laminar Flow Device in Base of Spout: Ideal for hospital applications.

Solid Brass Construction: Durable - Excellent in high use applications. Ideal for prolonged contact with water.

Ceramic Disc Valve Cartridges: Assures a lifetime of drip-free performance.

Field-Convertible Rigid/Swivel Spout: Easily converted in the field.

Lead Free: Faucet contains ≤ 0.25% total lead content by weighted average.

SUGGESTED SPECIFICATION:

Two handle widespread lavatory faucet shall feature cast brass valve bodies with 8" rigid copper connection. Shall feature water-conserving 1.5 gpm/5.7L/min. pressure compensating laminar flow device in base of spout. Vandal-Resistant wrist blade handles. 1/4 turn washerless ceramic disc valve cartridges. Shall also feature field-convertible rigid/swivel spout with plain spout end. Fitting shall be American Standard Model # 6540.180.002.

MONTERREY™

Style That Works Better

WITH LAMINAR FLOW IN BASE OF SPOUT TWO-HANDLE 8" WIDESPREAD LAVATORY FAUCET WITH RIGID/SWIVEL GOOSENECK SPOUT

CODES AND STANDARDS

These products meet or exceed the following codes and standards:

ANSI 117.1 ASME A112.18.1 CSA B 125 NSF 61/Section 9 and Annex G

		Finish
Product		Polished Chrome
Number	Description	002
6540.180	Widespread Lavatory with field-convertible rigid/swivel gooseneck spout. 1.5 gpm/5.7L/min pressure compensating laminar flow device in base of spout. Plain spout end. Vandal-Resistant Wrist Blade Handles. Less drain and pop-up hole.	

MEETS THE AMERICANS WITH DISABILITIES ACT GUIDELINES AND ANSI A117.1 REQUIREMENTS FOR ACCESSIBLE AND USABLE BUILDING FACILITIES-CHECK LOCAL CODES

Gourmet® Single Bowl Sink Models LR, LRQ, LRS and LRSQ Series

GENERAL

Highest quality sink formed of #18 (1.2mm) gauge, type 304 (18-8) nickel bearing stainless steel. Top mount.

DESIGN FEATURES

LR(Q) Bowl Depth: 8" (203mm) (LR[Q]2521), 7-1/2" (191mm) (LR[Q]1919), 7-5/8" (194mm) (all others).

Coved Corners: 1-3/4" (44mm) vertical and horizontal radius.

Bowl and Faucet Deck Recess: 3/16" (5mm) below outside edge of sink.

Finish: Exposed surfaces are hand blended to a lustrous satin finish.

Underside: Fully undercoated to dampen sound and prevent condensation. LR(Q)2521 is fully protected by heavy duty Sound Guard® undercoating.

OTHER

Drain Opening: 3-1/2" (89mm).

NOTE: Unless otherwise specified, models with one, two, three or OS4 faucet hole option are furnished with 3 faucet holes as shown; models with choice of one, two, three, four or five faucet hole option are furnished with 4 faucet holes standard.

These sinks comply with ASME A112.19.3.

These sinks are listed by the International Association of Plumbing and Mechanical Officials as meeting the requirements of the Uniform Plumbing Code.

Model LR(Q)22193

HOLE DRILLING CONFIGURATIONS

Quick-Clip® Mounting System

U-Channel Type Mounting System

In keeping with our policy of continuing product improvement, Elkay reserves the right to change product specifications without notice. Please visit elkayusa.com for most current version of Elkay product specification sheets. This specification describes an Elkay product with design, quality and functional benefits to the user. When making a comparison of other producers' offerings, be certain these features are not overlooked.

SINK DIMENSIONS*

U-Channel	Quick-Clip®	Ove	erall W	L	Inside Bow W	rl D	Cutout in Countertop [1¹/2" (38mm) Radius Corners]		No. of 1 ¹ / ₂ " (38mm) Dia. Faccet Holes	Minimum
Model Number	Model Number	A	В	C	D	E	L	W	4" (102mm) Center	Cabinet Size
LR1316	LRQ1316	13 (330mm)	16 (406mm)	10 (254mm)	10 (254mm)	7 ⁵ / ₈ (194mm)	12 ³ / ₈ (321mm)	15 ³ / ₈ (391mm)	1, 2, MR2 or 3	18 (457mm)
LR1517	LRQ1517	15 (381mm)	17 ¹ / ₂ (445mm)	12 (305mm)	12 (305mm)	7 ⁵ / ₈ (194mm)	14 ³ / ₈ (371mm)	16 ⁷ / ₈ (429mm)	1, 2, MR2 or 3	18 (457mm)
LR1522	LRQ1522	15 (381mm)	22 (559mm)	11 ¹ / ₂ (292mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	14 ³ / ₈ (371mm)	21 ³ / ₈ (543mm)	1, 2, MR2 or 3	18 (457mm)
LR1716	LRQ1716	17 (432mm)	16 (406mm)	14 (356mm)	10 (254mm)	7 ⁵ / ₈ (194mm)	16 ³ / ₈ (422mm)	15 ³ / ₈ (391mm)	1, 2, MR2, 3 or OS4	21 (533mm)
LR1720	LRQ1720	17 (432mm)	20 (508mm)	14 (356mm)	14 (356mm)	7 ⁵ / ₈ (194mm)	16 ³ / ₈ (422mm)	19 ³ / ₈ (492mm)	1, 2, MR2, 3 or OS4	21 (533mm)
LR1722	LRQ1722	17 (432mm)	22 (559mm)	13 ¹ / ₂ (343mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	16 ³ / ₈ (422mm)	21 ³ / ₈ (543mm)	1, 2, MR2, 3 or OS4	21 (533mm)
LR1918	LRQ1918	19 (483mm)	18 (457mm)	16 (406mm)	11 ¹ / ₂ (292mm)	7 ⁵ / ₈ (194mm)	18 ³ / ₈ (467mm)	17 ³ / ₈ (441mm)	1, 2, MR2, 3 or OS4	24 (610mm)
LR1919	LRQ1919	19 ¹ / ₂ (495mm)	19 (483mm)	16 (406mm)	13 ¹ / ₂ (343mm)	7 ¹ / ₂ (190mm)	18 ⁷ / ₈ (479mm)	18 ³ / ₈ (467mm)	1, 2, MR2, 3 or OS4	24 (610mm)
LR2022	LRQ2022	19 ¹ / ₂ (495mm)	22 (559mm)	16 (406mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	18 ⁷ / ₈ (479mm)	21 ³ / ₈ (543mm)	1, 2, MR2, 3 or OS4	24 (610mm)
LR2219	LRQ2219	22 (559mm)	19 ¹ / ₂ (495mm)	18 (457mm)	14 (356mm)	7 ⁵ / ₈ (194mm)	21 ³ / ₈ (543mm)	18 ⁷ / ₈ (479mm)	1, 2, MR2, 3, 4 or 5	27 (686mm)
LR2222	LRQ2222	22 (559mm)	22 (559mm)	19 (483mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	21 ³ / ₈ (543mm)	21 ³ / ₈ (543mm)	1, 2, MR2, 3, 4 or 5	27 (686mm)
LR2521	LRQ2521	25 (635mm)	21 ¹ / ₄ (540mm)	21 (533mm)	15 ³ / ₄ (400mm)	8 (203mm)	24 ³ / ₈ (619mm)	20 ⁵ / ₈ (524mm)	1, 2, MR2, 3, 4 or 5	30 (762mm)
LR3122	LRQ3122	31 (787mm)	22 (559mm)	28 (711mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	30 ³ / ₈ (772mm)	21 ³ / ₈ (543mm)	1, 2, MR2, 3, 4 or 5	36 (914mm)
LRS3322	LRSQ3322	33 (838mm)	22 (559mm)	28 (711mm)	16 (406mm)	7 ⁵ / ₈ (194mm)	32 ³ / ₈ (822mm)	21 ³ / ₈ (543mm)	1, 2, MR2, 3, 4 or 5	36 (914mm)

 $^{{}^{\}star}$ Length is left to right. Width is front to back.

LRQ Series Illustrated

FEATURES

Model LK810AT08L2

- · Three hole dual handle top mount faucet
- · Quarter turn ceramic disc cartridge
- · Solid brass construction
- · Chrome finish
- · Includes spout swing restriction pin

Model LK810AT08T4

 Same as LK810AT08L2 except with 4" wrist blades handles

Model LK810AT08T6

 Same as LK810AT08L2 except with 6" wrist blades handles

COMPLIES WITH:

- ASME/ANSI A112.18.1
- CSA B125-01
- NSF/ANSI 61
- ADA
- UPC/CUPC
- · IAPMO Listed

Exposed Deck Mount 8" Center Commercial Faucet Models LK810AT08L2, LK810AT08T4, LK810AT08T6

Job Name: Item #:
Notes:

FRONT VIEW

Architect/Engineer Approval: Date:

SEE OTHER SIDE FOR REPLACEMENT PARTS

SIDE VIEW

Page 1 of 2 30 November 2011

Triple Zone Valve and Box Assembly

SPECIFICATION

Triple Zone Valve and Box Assembly

Valves shall be full port, double seal, ball-type with three piece bronze/brass body and a chrome plated brass ball. Valves shall be designed for a maximum working pressure of 600 psig WOG or vacuum service to 29" Hg. Valve body shall have reinforced PTFE ball seat and reinforced PTFE stem seals, and stem shall be blowout proof. All valve materials shall be compatible with USP oxygen, nitrous oxide, medical air, carbon dioxide, helium, nitrogen, argon and mixtures thereof. A 1/4 turn of the handle shall be required to operate the valve from OPEN to CLOSED position. The valve shall be securely attached to the box and provided with type K copper tube extensions for making connection to system piping outside the box. All valves shall be serviceable in the line, supplied clean and prepared for oxygen service. All zone valve assemblies shall include a 1/8" NPT port with pipe plug as a provision for connection of a gauge. The gauge port is located on the terminal outlet side of the valve to register pipeline pressure or vacuum. The gauge shall be visible through the door of the zone valve box. The zone valve and box assembly shall meet all requirements of NFPA 99 and CAN/CSA Z305.1. The valves conform to MSS SP-110. Type K copper tube extensions conform to ASTM B88, UNS No. C12200, and H58 temper. The gauges conform to ANSI B40.1.

Triple Zone Box Design

The zone valve box shall be constructed of 18 gauge steel with white epoxy finish and provided with two galvanized steel brackets that anchors the box to the wall. Anchor brackets shall be designed to permit box assemblies to be ganged together in a vertical stack. Triple valve box assemblies require a rough wall opening of sufficient size to accomodate a nominal 11-7/8" wide x 15-1/2" high x 3-7/8" deep box. The 2-1/2" and 3" valves require a rough wall opening of 15-7/8" wide x 10" high x 6-11/16" deep. The zone valve box assembly shall have a sliding, opaque door with pull ring and clear gauge window. The door shall be capable of sliding to the right or left to facilitate installation requirements. In an emergency, the door shall SNAP OUT by pulling the pull ring forward without exposing sharp edges. The zone valve box shall be provided with an anodized aluminum trim capable of adjusting to variations in wall thickness up to 1" below flush. The zone valve box assembly shall be supplied with color coded gas identification labels. The assembly door shall have a label that reads:

-CAUTIONMEDICAL GAS SHUT-OFF VALVES CLOSE ONLY IN EMERGENCY

	Valve Size	Complete Assemi	oly Valve Size	Complete Assembly	Note:			
Zone Valve Box Assembly	Empty, large	150300-00	½" x1" x 1½"	150312-00	All zone valve box assemblies			
Assembly	½" x ½" x ½"	150301-00	3/4" x 3/4" x 3/4"	150313-00	include 1/8" NPT gauge port/ plug for each valve and two			
	½" x ½" x ¾"	150302-00	3/4" x 3/4" x 1"	150314-00	labels each for the following			
	½" x ½" x 1"	150303-00	³ / ₄ " x ³ / ₄ " x 1 ¹ / ₄ "	150315-00	services: Oxygen, Nitrous			
	½" x ½" x 1¼"	150304-00	³ / ₄ " x ³ / ₄ " x 1 ¹ / ₂ "	150316-00	Oxide, Medical Air, Nitrogen, Vacuum, WAGD, Carbon			
	½" x ½" x 1½"	150305-00	³ ⁄ ₄ " x 1" x 1"	150317-00	Dioxide, and Instrument Air.			
	½" x ¾" x ¾"	150306-00	3/4" x 1" x 11/4"	150318-00				
	½" x ¾" x 1"	150307-00	³ / ₄ " x 1" x 1½"	150319-00				
	½" x ¾" x 1¼"	150308-00	1" x 1" x 1"	150320-00				
	½" x ¾" x 1½"	150309-00	1" x 1" x 11/4"	150321-00				
	½" x1" x 1"	150310-00	1" x 1" x 1½"	150322-00				
	½" x1" x 1¼"	150311-00						
Туре		Part Number	System	System				
Gauges ¹	0-30" Hg	130107-00	Vacuum, WA	GD				
0-100 psig		130108-00	O2, Air, N2O,	CO ₂ & Mixtures				
	0-300 psig	130109-00	Nitrogen, Ins	Nitrogen, Instrument Air, O ₂ (100 psig), Air (100 psig), CO ₂ (100 psig)				
Smoked Finish Do	or Assembly ²	232173-SM		·				

Note: 1. Order gauges separately for zone valve application.

2. Smoked door is an additional cost and will ship loose for customer to replace.

Add	litional Labels	One Set per Package	tional Labels: 20 Labels per Package	
	430259-00	One Each: Oxygen, Nitrous Oxide, Medical Air, Vacuum, Nitrogen, WAGD, Carbon Dioxide, Instrument Air	 435000-21 Carbon Dioxide-Oxygen 435000-22 Oxygen-Carbon Dioxide 435000-23 Helium-Oxygen Mixture 435000-24 Oxygen-Helium Mixture 	Mixture (CO ₂ not over 7.5%) (He over 80.5%)
	435674-00	One Each: Oxygen, Nitrous Oxide, Air, Vacuum, Nitrogen (ISO)	435000-25 Helium 435000-28 Oxygen (100 psig) 435000-29 Medical Air (100 psig) 435000-30 Carbon Dioxide (100 psi 435000-31 Argon	g)

BeaconMedæs 1800 Overview Drive Rock Hill, SC 29730 Phone: (803) 817-5600 Fax: (803) 817-5750 www.beaconmedaes.com

APPENDIX F STRUCTURAL CALCULATIONS

Current Date: 3/27/2013 10:36 AM

Units system: English

File name: P:\0499_DVA\1-0499-0019 Lebanon CT-Radiology\1_Admin\3_Engineering\c_Structural\Dunnage Frame.etz\

Geometry data

GLOSSARY

Cb22, Cb33 : Moment gradient coefficients

Cm22, Cm33 : Coefficients applied to bending term in interaction formula : Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL : Tapered member section depth at K end of member

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2
K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO : 1 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
1	0.00	4.00	0.00	0
2	20.00	4.00	3.5625	0
3	0.00	4.00	3.5625	0
4	0.00	4.00	15.37	0
5	20.00	4.00	15.37	0
6	0.00	4.00	29.557	0
7	20.00	4.00	29.557	0
8	0.00	4.00	41.90	0
9	0.00	0.00	0.00	0
10	0.00	0.00	15.37	0
11	20.00	0.00	3.5625	0
12	20.00	0.00	29.557	0
13	0.00	0.00	41.90	0
14	11.00	4.00	3.5625	0
15	11.00	4.00	15.37	0
16	11.00	4.00	29.557	0
18	11.00	4.00	9.46	0
20	11.00	4.00	22.46	0
21	15.833	4.00	29.557	0
22	17.65	4.00	29.557	0
24	15.833	4.00	22.46	0
25	15.833	4.00	15.37	0

28	15.833	4.00	9.46	0
29	15.833	4.00	3.5625	0
30	15.833	4.00	34.137	0
34	17.65	4.00	3.5625	0
35	15.833	4.00	0.00	0
36	20.00	4.00	0.00	0
37	15.833	4.00	-2.15	0
39	0.00	2.00	41.90	0
40	0.00	4.00	39.90	0
41	0.00	2.00	15.37	0
42	0.00	4.00	17.37	0
43	0.00	4.00	13.37	0
44	2.00	4.00	15.37	0
45	20.00	2.00	29.557	0
46	20.00	4.00	27.557	0
47	0.00	2.00	0.00	0
48	0.00	4.00	2.00	0
49	20.00	2.00	3.5625	0
50	20.00	4.00	5.5625	0
64	20.00	4.00	22.46	0
65	20.00	4.00	9.46	0
66	20.00	4.00	-2.15	0
67	20.00	4.00	34.137	0

Restraints

Node	ТХ	TY	TZ	RX	RY	RZ
9	 1	1	 1	0	0	0
10	1	1	1	0	0	0
11	1	1	1	0	0	0
12	1	1	1	0	0	0
13	1	1	1	0	0	0

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
 1	1	 9	 COL1	HSS_SQR 6X6X3_8	A500 GrB rectangular	0.00	0.00	0.00
2	2	11	COL1	HSS_SQR 6X6X3_8	A500 GrB rectangular	0.00	0.00	0.00
3	4	10	COL1	HSS_SQR 6X6X3_8	A500 GrB rectangular	0.00	0.00	0.00
4	7	12	COL1	HSS_SQR 6X6X3_8	A500 GrB rectangular	0.00	0.00	0.00
5	8	13	COL1	HSS_SQR 6X6X3_8	A500 GrB rectangular	0.00	0.00	0.00
3	4	8	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
7	4	1	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
3	66	67	BEAM3	W 8X24	A992 Gr50	0.00	0.00	0.00
9	6	7	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
11	4	5	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
13	3	2	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
14	14	15	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
15	15	16	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
18	21	25	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00

20	25	29	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
26	28	65	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
27	24	64	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
45	30	67	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
51	35	36	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
52	37	66	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
57	39	40	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
58	41	42	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
59	41	44	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
60	41	43	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
61	47	48	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
62	45	22	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
63	45	46	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
64	34	49	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
65	49	50	BRACE7	L 3X3X3_8	A36	0.00	0.00	0.00
69	8	16	BEAM1	W 8X10	A992 Gr50	0.00	0.00	0.00
70	1	14	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
89	20	24	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
91	18	28	BEAM2	W 8X10	A992 Gr50	0.00	0.00	0.00
93	16	30	BEAM4	W 8X10	A992 Gr50	0.00	0.00	0.00
94	7	24	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
95	28	2	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
96	2	35	BRACE2	L 3X3X3_8	A36	0.00	0.00	0.00
97	5	24	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
98	5	28	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
99	16	24	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
100	15	24	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
101	15	28	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
102	14	28	BRACE1	L 3X3X3_8	A36	0.00	0.00	0.00
103	21	30	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00
104	29	37	BEAM1	W 8X24	A992 Gr50	0.00	0.00	0.00

Hinges

		Node-J				Node	e-K				
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
6	 1	 1	0	0	1	 1	0	0	0	0	Full
7	1	1	0	0	1	1	0	0	0	0	Full
8	1	1	0	0	1	1	0	0	0	0	Full
9	1	1	0	0	1	1	0	0	0	0	Full
11	1	1	0	0	1	1	0	0	0	0	Full
13	1	1	0	0	1	1	0	0	0	0	Full
14	1	1	0	0	1	1	0	0	0	0	Full
15	1	1	0	0	1	1	0	0	0	0	Full
18	0	0	0	0	1	1	0	0	0	0	Full
20	1	1	0	0	0	0	0	0	0	0	Full
26	1	1	0	0	1	1	0	0	0	0	Full
27	1	1	0	0	1	1	0	0	0	0	Full
51	1	1	0	0	1	1	0	0	0	0	Full
57	1	1	0	0	1	1	0	0	0	0	Full
58	1	1	0	0	1	1	0	0	0	0	Full
59	1	1	0	0	1	1	0	0	0	0	Full
60	1	1	0	0	1	1	0	0	0	0	Full
61	1	1	0	0	1	1	0	0	0	0	Full
62	1	1	0	0	1	1	0	0	0	0	Full

63	1	1	0	0	1	1	0	0	0	0	Full
64	1	1	0	0	1	1	0	0	0	0	Full
65	1	1	0	0	1	1	0	0	0	0	Full
69	1	1	0	0	1	1	0	0	0	0	Tension only
70	1	1	0	0	1	1	0	0	0	0	Full
89	1	1	0	0	1	1	0	0	0	0	Full
91	1	1	0	0	1	1	0	0	0	0	Full
93	1	1	0	0	1	1	0	0	0	0	Full
94	1	1	0	0	1	1	0	0	0	0	Full
95	1	1	0	0	1	1	0	0	0	0	Full
96	1	1	0	0	1	1	0	0	0	0	Full
97	1	1	0	0	1	1	0	0	0	0	Full
98	1	1	0	0	1	1	0	0	0	0	Full
103	0	0	0	0	1	1	0	0	0	0	Full
104	0	0	0	0	1	1	0	0	0	0	Full

Current Date: 3/27/2013 10:37 AM

Units system: English

File name: P:\0499_DVA\1-0499-0019 Lebanon CT-Radiology\1_Admin\3_Engineering\c_Structural\Dunnage Frame.etz\

Load data

GLOSSARY

Comb : Indicates if load condition is a load combination

Load conditions

Condition	Description	Comb.	Category
 DL	Dead Load	No	DL
SL	Snow Load	No	SNOW
Wx	Wind in X	No	WIND
Wz	Wind in Z	No	WIND
LL	Live Load	No	LL
Wx2	Wind in X Opp	No	WIND
Wz2	Wind in Z Opp	No	WIND
EQz	Seismic in Z	No	EQ
EQz2	Seismic in Z Opp	No	EQ

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
DL	8	у	-0.08	0.00	0.00	No	0.00	No
	13	у	-0.01	-0.01	11.00	No	15.8333	No
	14	у	-0.03	0.00	0.00	No	0.00	No
	15	У	-0.03	0.00	0.00	No	0.00	No
	18	У	-0.10	0.00	0.00	No	0.00	No
	20	у	-0.10	0.00	0.00	No	0.00	No
	93	у	-0.02	0.00	0.00	No	0.00	No
	103	у	-0.09	0.00	0.00	No	0.00	No
	104	у	-0.08	0.00	0.00	No	0.00	No
SL	8	у	-0.064	0.00	0.00	No	0.00	No
	18	у	-0.064	0.00	0.00	No	0.00	No
	20	у	-0.064	0.00	0.00	No	0.00	No
	103	у	-0.064	0.00	0.00	No	0.00	No
	104	у	-0.064	0.00	0.00	No	0.00	No
Wx	18	Х	0.123	0.00	0.00	No	0.00	No
	20	Х	0.123	0.00	0.00	No	0.00	No
	103	Х	0.123	0.00	0.00	No	0.00	No
	104	Х	0.123	0.00	0.00	No	0.00	No
Wz	52	Z	0.123	0.00	0.00	No	0.00	No
LL	14	у	-0.10	0.00	0.00	No	0.00	No

Wx2 Wz2	15 18 20 93 103 8 45	y y y y y x z	-0.10 -0.10 -0.10 -0.06 -0.06 -0.123 -0.123	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	No No No No No No	0.00 0.00 0.00 0.00 0.00 0.00 0.00	No No No No No No
------------	--	---------------------------------	---	--	--	----------------------------------	--	----------------------------------

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
LL	13	у	-0.30	13.40	No
	93	У	-0.30	3.30	No
EQz	1	Z	0.30	0.00	No
	2	Z	1.00	0.00	No
EQz2	4	Z	-1.00	0.00	No
	5	Z	-0.30	0.00	No

Self weight multipliers for load conditions

		Self weight multiplier							
Condition	Description	Comb.	MultX	MultY	MultZ				
DL	Dead Load	No	0.00	-1.00	0.00				
SL	Snow Load	No	0.00	0.00	0.00				
Wx	Wind in X	No	0.00	0.00	0.00				
Wz	Wind in Z	No	0.00	0.00	0.00				
LL	Live Load	No	0.00	0.00	0.00				
Wx2	Wind in X Opp	No	0.00	0.00	0.00				
Wz2	Wind in Z Opp	No	0.00	0.00	0.00				
EQz	Seismic in Z	No	0.00	0.00	0.00				
EQz2	Seismic in Z Opp	No	0.00	0.00	0.00				

Earthquake (Dynamic analysis only)

Condition a/g Ang. Damp. [Deg] [%]	
DL 0.00 0.00 0.00	
SL 0.00 0.00 0.00	
Wx 0.00 0.00 0.00	
Wz 0.00 0.00 0.00	
LL 0.00 0.00 0.00	
Wx2 0.00 0.00 0.00	
Wz2 0.00 0.00 0.00	
EQz 0.00 0.00 0.00	
EQz2 0.00 0.00 0.00	

Current Date: 3/27/2013 10:38 AM

Units system: English

File name: P:\0499_DVA\1-0499-0019 Lebanon CT-Radiology\1_Admin\3_Engineering\c_Structural\Dunnage Frame.etz\

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

D1=DL

D2=DL+LL

D3=DL+SL

D4=DL+0.75LL

D5=DL+0.75SL

D6=DL+0.75SL+0.75LL

D7=DL+Wx

D8=DL+Wz

D9=DL

D10=DL

D11=DL+0.75Wx+0.75LL

D12=DL+0.75Wz+0.75LL

D13=DL+0.75SL+0.75Wx

D14=DL+0.75SL+0.75Wz

D15=DL+0.75SL+0.75Wx+0.75LL

D16=DL+0.75SL+0.75Wz+0.75LL

D17=DL+0.75LL

D18=DL+0.75LL

D19=DL+0.75SL

D20=DL+0.75SL

D21=DL+0.75SL+0.75LL

D22=DL+0.75SL+0.75LL

D23=0.6DL+Wx

D24=0.6DL+Wz

D25=0.6DL

D26=0.6DL

D27=DL+Wx2

D28=DL+Wz2

D29=DL+0.75LL+0.75Wx2

D30=DL+0.75LL+0.75Wz2

D31=DL+0.75SL+0.75Wx2

D32=DL+0.75SL+0.75Wz2

D33=DL+0.75SL+0.75LL+0.75Wx2

D34=DL+0.75SL+0.75LL+0.75Wz2

D35=0.6DL+Wx2

D36=0.6DL+Wz2

D37=DL+0.7EQz

D38=DL+0.7EQz2

D39=DL+0.525EQz+0.75LL

D40=DL+0.525EQz2+0.75LL

D41=DL+0.525EQz+0.75SL

D42=DL+0.525EQz2+0.75SL

D43=DL+0.525EQz+0.75LL+0.75SL

D44=DL+0.525EQz2+0.75LL+0.75SL

D45=0.6DL+0.7EQz

D46=0.6DL+0.7EQz2

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
BEAM1	W 8X10	69	D34 at 50.00%	0.06	ок	Eq. H1-1b
	W 8X24	6	D33 at 53.13%	0.13	OK	Eq. H1-1b
	77 0.7.2-7	7	D33 at 76.56%	0.03	OK	Eq. H1-1b
		9	D33 at 54.69%	0.03	OK	Eq. H1-1b
		11	D33 at 10.94%	0.20	ok OK	Eq. H1-1b
		13	D33 at 54.69%	0.20	OK	Eq. H1-1b
		14	D2 at 50.00%	0.20	OK	Eq. H1-1b
		15	D2 at 50.00%	0.03	OK	Eq. H1-1b
		18	D15 at 50.00%	0.08	OK	Eq. H1-1b
		20			OK	•
		103	D15 at 50.00%	0.08 0.09	OK	Eq. H1-1b
		103	D15 at 0.00% D15 at 0.00%	0.09	OK	Eq. H1-1b Eq. H1-1b
BEAM2	W 8X10	26	 D35 at 0.00%	0.01	OK	Sec. E1
		27	D35 at 0.00%	0.01	OK	Sec. E1
		45	D28 at 50.00%	0.07	ok	Eq. H1-1b
		51	D27 at 0.00%	0.01	OK	Sec. E1
		52	D8 at 50.00%	0.07	OK	Eq. H1-1b
		70	D34 at 50.00%	0.02	OK	Eq. H1-1b
		89	D7 at 50.00%	0.02	OK	Eq. H1-1b
		91	D27 at 50.00%	0.00	OK	Eq. H1-1b
BEAM3	W 8X24	8	D15 at 48.61%	0.24	ок	Eq. H1-1b
BEAM4	W 8X10	93	D2 at 50.00%	0.05	oK	Eq. H1-1b
BRACE1	L 3X3X3_8	94	D15 at 50.00%	0.24	OK	Eq. H1-1a
		95	D15 at 0.00%	0.18	OK	Sec. E1
		97	D33 at 50.00%	0.06	OK	Eq. H1-1b
		98	D34 at 50.00%	0.05	OK	Eq. H1-1b
		99	D33 at 100.00%	0.16	OK	Eq. H1-1b
		100	D33 at 100.00%	0.40	OK	Eq. H1-1a
		101	D33 at 100.00%	0.28	OK	Eq. H1-1b
		102	D33 at 100.00%	0.15	OK	Eq. H1-1b
BRACE2		96	D7 at 50.00%	0.03	OK	Eq. H1-1b
BRACE7		57	D33 at 0.00%	0.13	OK	Sec. E1
		58	D33 at 0.00%	0.14	OK	Sec. E1
		59	D33 at 50.00%	0.58	OK	Eq. H1-1a
		60	D33 at 0.00%	0.04	OK	Sec. E1
		61	D33 at 0.00%	0.05	OK	Sec. E1
		62	D15 at 50.00%	0.32	OK	Eq. H1-1a
		63	D43 at 50.00%	0.36	OK	Eq. H1-1a
		64	D15 at 50.00%	0.35	OK	Eq. H1-1a
		65	D44 at 50.00%	0.36	OK	Eq. H1-1a
COL1	HSS_SQR 6X6X3_8	1	D33 at 50.00%	0.03	OK	Eq. H1-1b
	_ _	2	D15 at 50.00%	0.43	ОК	Eq. H1-1b
		3	D33 at 50.00%	0.40	OK	Eq. H1-1b
		4	D15 at 50.00%	0.43	OK	Eq. H1-1b
		5	D33 at 50.00%	0.08	OK	Eq. H1-1b